首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several factitious foods were assessed for rearing the anthocorid predators Orius thripoborus (Hesse) and Orius naivashae (Poppius) (Hemiptera: Anthocoridae) in the laboratory. Developmental and reproductive traits of both Orius species were examined when offered frozen eggs of the Mediterranean flour moth, Ephestia kuehniella Zeller, frozen processed eggs of the medfly, Ceratitis capitata Wiedemann, or mixed motile stages of the astigmatid mites Tyrophagus putrescentiae (Schrank) or Carpoglyphus lactis (L). Whereas C. lactis and T. putresecentiae proved to be an inferior food for rearing O. thripoborus and O. naivashae, eggs of C. capitata fully supported development and reproduction of both predators. Results on medfly eggs were similar or slightly inferior to those on E. kuehniella eggs, which is the standard food for culturing these anthocorid bugs. O. thripoborus could be maintained for 4 consecutive generations on C. capitata eggs indicating that processed medfly eggs can be a suitable and cheaper alternative to E. kuehniella eggs for prolonged rearing of these Orius spp.  相似文献   

2.
The capturing efficiency of four coloured (yellow, green, white and blue) sticky traps, placed at the top, middle and bottom strata of cotton plants, was tested for the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and its predatory bug, Orius niger (Wolff) (Hemiptera: Anthocoridae), as well as spatial distributions of both insects on the plant in years 2006 and 2007. The white coloured trap was the most attractive to F. occidentalis and O. niger in the 2-year study. The blue coloured trap was the least attractive for Orius. The mean numbers of F. occidentalis and O. niger on the top plant parts (flowers and leaves) and in all coloured traps positioned on the upper parts of the plants were greater than those found in the lower two strata. Taylor's power law analysis showed that F. occidentalis and O. niger adults aggregated in the flowers or on the leaves. This study suggests that top flowers could be preferentially sampled to determine population densities of Frankliniella flower thrips and Orius species in cotton, and thus, sticky traps should be placed on the top level of plants. F. occidentalis: O. niger ratios in the flowers varied from 4 to 60 thrips per Orius adult in the three plant strata. This result may indicate that F. occidentalis experiences more predation from Orius.  相似文献   

3.
《Biological Control》2006,36(1):57-64
An omnivore shows preference to its preys and thus its control efficiency could be altered in different mix infestation system. The efficiency of Orius insidiosus for biocontrol of either Frankliniella occidentalis or Tetranychus urticae alone or for the two pests in combinations was studied on beans. When only mites or thrips were offered as prey, 1 or 2 O. insidiosus could considerably suppress pest populations at an initial density of 20, 40, and 80 adult female mites, and 100 and 160 thrips larvae, respectively. A single O. insidiosus was able to reduce mite populations by 52.9, 38.7, and 25.8% at initial densities of 20, 40, and 80 mites, respectively, two bugs achieved control levels of 60.6, 63.1, and 38.4%. Releases of 1 and 2 O. insidiosus resulted in corrected mortalities of 62.5 and 87.9%, and 46.3 and 71.9% in F. occidentalis at initial larval densities of 100 and 160, respectively. When two pests were simultaneously offered, the efficiency of O. insidiosus in controlling T. urticae markedly decreased. Furthermore, mite control decreased with increasing T. urticae densities and was also affected by the density of O. insidiosus. The presence of mites at initial densities of 20–80 females did not significantly influence thrips control by O. insidiosus. The presence of F. occidentalis resulted in higher oviposition by O. insidiosus females than the presence of mites, indicating that thrips are a more suitable resource than T. urticae for O. insidiosus. The implications for biocontrol of F. occidentalis and T. urticae are discussed.  相似文献   

4.
Components of search effort were determined for adult females of Orius tristicolor (White) (Hemiptera: Anthocoridae) on bean, Phaseolus vulgaris L., leaves with either western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) or twospotted spider mites, Tetranychus urticae (Koch) (Acari: Tetranychidae) as prey. In the absence of prey, females of O. tristicolor allocated significantly more search time to leaves damaged by western flower thrips than to leaves damaged by twospotted spider mites, artificially damaged leaves or undamaged leaves. In the presence of prey, search time increased with increasing amounts of leaf damage for both prey species, but was not affected by prey species. Amounts of leaf damage or type of prey did not affect giving-up-time. The proportion of predators that successfully located thrips increased with increasing amounts of thrips damage on leaves. Females of O. tristicolor appeared to follow some simple, behavioural rules-of-thumb for allocation of search effort. The presence and type of damage determined the initial effort allocated to searching a leaf. Subsequent effort was determined by successful capture of prey, regardless of species. The implications of these results for application of Orius spp. for biological control are discussed.  相似文献   

5.
《Journal of Asia》2022,25(2):101912
Orius species (Hemiptera: Anthocoridae) are generalist predators of small insects, including thrips, mites, aphids, and scales. Here, we evaluated the prey preference of Orius minutus (L.) on five prey species by comparing it with Tetranychus urticae Koch (Acari: Tetranychidae) as a standard prey. Among five prey species tested, Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) and Hyalopterus pruni (Geoffroy) (Hemiptera: Aphididae) were preyed on more than T. urticae by O. minutus in a four hour choice test. In a four hour no-choice test, F. intonsa was the most frequently consumed prey, followed by H. pruni, T. urticae, Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae), Eriococcus sp. (Hemiptera: Eriococcidae), and Stephanitis pyrioides Scott (Hemiptera: Tingidae). The functional response of O. minutus in response to various densities of adult T. urticae on kidney bean leaf was compared with that of the commercialized species Orius laevigatus (Fieber). Different numbers of adult T. urticae (5, 10, 20, 40, 80, and 120) were offered to females of both predators for 24 h in a controlled environment of 25.0 ± 0.5 °C, 71.2 ± 5.0% RH, and a 16: 8 h (L: D) photoperiod. Both O. minutus and O. laevigatus exhibited a Type III response according to a logistic regression model. Despite the similar attack rate or handling time found between the two species, predation rate was higher on O. minutus than on O. laevigatus. These results indicate that O. minutus could also play an important role in the biological control of T. urticae as well as F. intonsa and H. pruni.  相似文献   

6.
不同猎物饲喂对南方小花蝽捕食量和喜好性的影响   总被引:1,自引:0,他引:1  
张昌容  郅军锐  莫利锋 《生态学报》2013,33(9):2728-2733
为探讨南方小花蝽对不同猎物的捕食喜好性,室内用西花蓟马、蚕豆蚜、二斑叶螨、混合饲料(同时饲喂3种猎物)分别饲喂南方小花蝽驯化两代,研究了4种饲喂处理的南方小花蝽初孵若虫、5龄若虫和雌成虫对西花蓟马、蚕豆蚜和二斑叶螨的捕食量和喜好性。结果显示不同猎物饲喂处理驯化的南方小花蝽1龄若虫对同一种猎物的捕食量和喜好性均不存在显著差异。南方小花蝽5龄若虫和雌成虫对某种猎物的捕食量因前期取食的猎物种类不同而有显著差异。南方小花蝽5龄若虫和雌成虫均表现出对西花蓟马2龄若虫的正喜好性。蚕豆蚜饲喂处理的5龄若虫和雌成虫对蚕豆蚜表现出正喜好性,除二斑叶螨饲喂处理外其余3种处理的南方小花蝽5龄若虫和雌成虫均表现出对二斑叶螨的负喜好性。以上结果表明4种饲喂驯化处理的南方小花蝽1龄若虫的喜好性不受前期取食猎物的影响,但5龄若虫和雌成虫对前期取食过的猎物的喜好性增强,存在一定的学习行为。  相似文献   

7.
The minute pirate bugs (Hemiptera: Anthocoridae) are effective biological control agents against destructive agricultural pests such as the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) in agroecosystems around the world. One species, Orius insidiosus (Say), has proven effective in controlling thrips populations in fields and greenhouses, and serves as an integral component of many integrated pest management (IPM) programs. Three experiments were conducted using motion-tracking software and dual-choice Y-tube bioassays to determine whether direct thrips contact and thrips cues contact induced arrestant and attractant behaviors. The experiments revealed that O. insidiosus adults exhibited behavioral changes indicative of switching from extensive to intensive foraging after direct exposure to thrips prey. Similar arresting behavior was induced by the presence of thrips tracks alone. In Y-tube bioassays O. insidiosus showed preference towards arms containing tracks from western flower thrips larvae vs. clean arms, but only when direct contact with the tracks was made in the stem. Our data indicate that thrips deposit non-volatile semiochemicals that are used by O. insidiosus during foraging. These compounds have the potential to aid in O. insidiosus behavior manipulation which may help in early control of thrips populations in fields and greenhouses. Further research is necessary to determine the chemical composition of these cues and how to effectively and pragmatically integrate the inducing stimuli into biocontrol programs as part of IPM strategies.  相似文献   

8.
Orius laevigatus (Hemiptera: Anthocoridae) is a key predator of thrips and is mass reared in large numbers for use in biological control. The aim of this study was to evaluate the effect of founder population size on the biological and behavioral performance of O. laevigatus over time. Laboratory lines were started from 1, 10 and 50 founder couples from 750 adults collected in the field and their performance was evaluated at the 5th–6th and 10th–11th generations. Adaptation to the captive rearing situation occurred in the 10 and 50 founder couples lines while it failed in the 1 founder couple line. The intrinsic rate of natural increase (rm) increased and the period for doubling the population (D) decreased over the generations in the 10 and 50 founder couples lines, while (rm) decreased and (D) increase in the 1 founder couple line. Also, consumption of Frankliniella occidentalis prey was significantly lower for females from the 1 founder couple line at the 5th generation compared to females from the 10 and 50 founder couples lines. Females of laboratory lines of all founder couples did not respond to odours from thrips infested plants during the 5th and 10th generations, whereas wild females strongly reacted to these odours. We suggest that the lack of reaction to infested plant volatiles may be due to the artificial rearing method where mass reared predators do not experience an infested crop. The results showed that the 1 founder couple line differed from the 10 and 50 founder couples lines, suggesting that bottlenecking had an effect at that level. However, no difference was found between the 10 and 50 founder couples lines which suggest that these founder numbers can be used to start laboratory-reared O. laevigatus lines without a significant loss in quality of its relevant biological characteristics.  相似文献   

9.
The omnivorous anthocorid predator Orius laevigatus is an economically important biological control agent of several small arthropod pests including the western flower thrips Frankliniella occidentalis. Mass rearing systems for Orius bugs typically make use of plant materials such as bean pods as an oviposition substrate and moisture source. Omission of plant materials from the mass rearing system of these beneficial arthropods could drastically improve the cost‐effectiveness of their production and thus stimulate their use in augmentative biological control. This study investigated the effect of a plantless rearing system, using wax paper as a walking substrate, water encapsulated in Parafilm domes, and an artificial oviposition substrate made of Parafilm and moist cotton wool, on the developmental and reproductive fitness of O. laevigatus. Plantless rearing during four generations resulted in females with an 11% lower body weight and a pre‐oviposition period that was prolonged by 29%. However, other biological parameters were not negatively affected by the absence of plants. In addition, plantless‐reared females had similar predation rates on F. occidentalis larvae as their peers maintained on plants. Our study indicates that the omission of plant material from the production cycle of O. laevigatus is possible when Ephestia kuehniella eggs are provided as a nutritionally optimal food source.  相似文献   

10.
Orius sauteri (Poppius; Hemiptera: Anthocoridae) is an important predator of western flower thrips, Frankliniella occidentalis (Pergande; Thysanoptera: Thripidae). O. sauteri would be directly exposed to the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin in the field should the fungus be used as a biopesticide. If the fungus were to negatively affect O. sauteri in agro-ecosystems, predation of F. occidentalis by O. sauteri may be limited. The present study was undertaken to evaluate the insecticidal activity of strain B.bassiana-RSB of B. bassiana, which is highly virulent to F. occidentalis, on the predator under laboratory conditions. Results showed that, regardless of the concentration applied to first instars, Bb-RSB was not insecticidal against O. sauteri, nor did direct applications affect the developmental rate of the predator. Significant differences in developmental rates and adult longevity were observed between O. sauteri that fed on Bb-RSB-infected F. occidentalis cadavers and those that fed on untreated thrips. Developmental time (from first instar to adult) increased from 0.3 to 0.7 days and adult longevity decreased by 0.8 to 1.2 days for predators fed thrips treated with low and high concentrations of strain Bb-RSB, respectively, compared with predators fed on untreated thrips. However, these differences were only 3–13% of mean values for the controls, suggesting that the effects of Bb-RSB on O. sauteri are relatively minor. These findings highlight the potential use of O. sauteri in combination with B. bassiana for the biocontrol of F. occidentalis, but field tests must be performed to confirm their compatible use.  相似文献   

11.
The anthocorid predator Orius laevigatus is widely used as biological control agent of thrips pests, including the western flower thrips Frankliniella occidentalis. In the current study, it was shown that O. laevigatus adults can increase plant resistance to feeding damage of F. occidentalis on tomato plants. The predator elicits a jasmonic acid (JA) mediated wound response during endophytic oviposition, resulting in reduced thrips feeding. A strong accumulation of H2O2, a molecule involved in different parts of the wound response, in leaf tissue surrounding the predator eggs or oviposition puncture sites was observed. Infestation of tomato plants with adult predators led to the upregulation of three JA regulated wound responsive genes: the precursor prosystemin, the jasmonic acid biosynthesis enzyme allene oxide synthase and the defence protein proteinase inhibitor I. Likewise, the presence of adults caused accumulation of proteinase inhibitor II, a principal marker for the wound response.  相似文献   

12.
Orius species are important biological control agents of thrips in protected crops. Rearing conditions in mass production facilities may affect their performance in the crop when searching for the target prey. The aim of this study was to evaluate and compare the search behaviour and orientation towards prey of two Orius species, O. laevigatus (Fieber) and O. insidiosus (Say) that have been reared in the laboratory under different conditions, with wild (field‐collected) individuals. Adult predator females were placed in a Y‐tube olfactometer and offered a choice between the odours released by plants of different species (cotton, common bean, sweet pepper and cucumber), which were either non‐infested or infested with Frankliniella occidentalis (Pergande) adults.O. laevigatus and O. insidiosus responded to odours from thrips‐infested plants and these responses were influenced by the origin of the colonies. A larger percentage of laboratory‐reared O. laevigatus females (42%) did not made a choice between thrips‐infested or clean plants, compared with wild individuals (17%). Of those females that did respond to plant odours, a smaller percentage of laboratory‐reared O. laevigatus females (34%) responded to the odours from thrips‐infested plants compared with wild insects (76%). No significant differences were found inO. insidiosus females that did not make a choice between thrips‐infested or clean plants (14% for wild vs. 17% for lab individuals). Also, no significant differences were found between O. insidiosus females that selected thrips‐infested plants at the corresponding proportion of wild (75%) and laboratory‐reared (70%) individuals. We propose that the olfactometer test could be a complementary evaluation aspect to the already developed quality criteria for performance of mass‐reared Orius predators.  相似文献   

13.
We investigated interactions between the generalist predator Orius insidiosus (Say) (Heteroptera: Anthocoridae) and two species of thrips prey, Frankliniella bispinosa (Morgan) and Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and interspecific differences in morphology and behavior between these prey species that could contribute to differences in predation by O. insidiosus. Frankliniella occidentalis is significantly larger than F. bispinosa. Frankliniella bispinosa has greater mobility compared with F. occidentalis. When O. insidiosus was offered either F. bispinosa or F. occidentalis as prey in single species trials, there were no significant differences in the number of prey captured. However, O. insidiosus had significantly more encounters with F. bispinosa than with F. occidentalis. In arenas with equal numbers of both species, O. insidiosus encountered and captured F. occidentalis more than F. bispinosa. In large arenas with two pepper plants (Capsicum annuum L.), O. insidiosus preyed on more F. occidentalis than on F. bispinosa. These results indicate that O. insidiosus can prey on both thrips species, but that it preferentially captures F. occidentalis. The greater locomotion and movement of F. bispinosa, perhaps combined with its smaller size, allow it to evade predation by O. insidiosus better than F. occidentalis. Consequently, the observed preference of O. insidiosus for F. occidentalis is not exclusively a function of active selection by the predator but also could arise from inherent differences among prey. We propose this differential predation as a mechanism contributing to observed differences in the temporal dynamics of these species in pepper fields.  相似文献   

14.
《Journal of Asia》2021,24(3):555-563
Frankliniella occidentalis Pergrande is important invasive pests in China, causing damage to agricultural production, and Orius similis Zheng is the dominant predator species of F. occidentalis. A two-year survey was conducted to determine the population density of F. occidentalis and O. similis, on chili (Capsicum annuum L.) and maize (Zea mays L.) crops and surrounding weed species, which included white clover (Trifolium repens L.), St. John's wort (Hypericum beanii N. Robson), alfalfa (Medicago sativa L.) and beggarticks (Bidens pilosa L.) in Kunming, southern China. The activity of F. occidentalis on these 6 host plant species was determined using the quartile method. F. occidentalis mainly damaged plants during their flowering stage. The main activity period of F. occidentalis occurred earlier on H. beanii and T. repens than on C. annuum. The peak activity of F. occidentalis occurred in the middle of May (on T. repens). During the whole activity period, the highest thrips densities were recorded on H. beanii among all of the sampled host plant species, followed by C. annuum. The lowest density was recorded on B. pilosa. Dynamics of immature F. occidentalis were more irregular than that of adults. The highest density of O. similis was recorded on Z. mays. It was 2.27–26.43-fold (2017) and 2.01–19.09-fold (2018) higher than that on other host plant species. This study showed that F. occidentalis could migrate between C. annuum and surrounding weeds. The weeds were the main source of thrips on C. annuum. The results indicated that Z. mays can be planted around C. annuum fields as a potential banker plant, to attract O. similis to control F. occidentalis on C. annuum, T. repens and B. pilosa. The flowering period of plants and surrounding plant species has a great effect to the population activities of F. occidentalis and predator O. similis on crops.  相似文献   

15.
The spread of the western flower thrips, Frankliniella occidentalis (Pergande), has resulted in the world‐wide destabilization of established integrated pest management programs for many crops. It is hypothesized that frequent exposure to insecticides in intensive agriculture selected for resistant populations, which allowed invasive populations in the eastern USA to overcome biotic resistance from the native community of species. Research conducted in Florida to understand the role of biotic factors in limiting the abundance of the western flower thrips is reviewed. Orius spp. (Hemiptera: Anthocoridae) are effective predators that suppress populations of thrips on crop and non‐crop hosts in southern and northern Florida. Orius are more effective predators of the western flower thrips than the native flower thrips, F. tritici (Fitch) and F. bispinosa (Morgan). The native species are competitors of the western flower thrips. Excessive fertilization and the use of broad‐spectrum insecticides in crop fields further enhances populations of the western flower thrips. Interactions with native species clearly limit the abundance of western flower thrips in Florida, but populations are abundant in fertilized crop fields where application of insecticides excludes predators and competitor species.  相似文献   

16.
The predatory bug Orius albidipennis (Reuter) (Hemiptera: Anthocoridae) has tremendous potential as a biological control agent, especially in its native range around the Mediterranean Basin and East Africa. The need to exploit native biological control agents is growing in importance as concerns over the introduction of non-native species continue to increase. However, little is known of the effects of different prey on development and reproduction of O. albidipennis compared with other species of Orius. Therefore, we compared the development, survival, reproductive biology, and prey consumption of O. albidipennis when fed eggs of Ephestia kuehniella Zeller, Tetranychus urticae Koch, and Trialeurodes vaporariorum (Westwood), and larvae of Gynaikothrips ficorum (Marchal), under laboratory of 26 ± 1°C, 60 ± 10% RH and 16L:8D photoperiod. Individuals were reared from the neonate stage until death on one of the four prey types. The type of prey had profound effects on all measured performance traits. The highest survival rate was recorded for nymphs that were fed on E. kuehniella eggs, while the lowest survival rate was observed for those fed on T. vaporariorum eggs. The shortest nymphal period was recorded for nymphs fed on E. kuehniella eggs, while the longest was measured for those fed on T. urticae eggs. During the nymphal period, O. albidipennis consumed significantly more eggs of T. urticae than other prey types, whereas the lowest number of consumed prey were eggs of E. kuehniella. Adult females and males consumed significantly more T. urticae eggs than other types of prey. However, Orius albidipennis females showed the highest fecundity when fed on E. kuehniella eggs, and the lowest when fed on T. vaporariorum eggs. Adult females and males that fed on G. ficorum larvae had significantly longer life spans compared with those fed other prey. Because of their relatively rapid development and high fecundity, O. albidipennis fed E. kuehniella eggs had a significantly higher net reproductive rate (Ro) and intrinsic rate of increase (r m ) than O. albidipennis fed other prey types. Overall, eggs of E. kuehniella were the most suitable diet for nymphs and adults of O. albidipennis. Although less suitable, O. albidipennis could survive and reproduce on the other prey types, which is a favourable attribute in biological control agents. These results on the effect of different prey types on development and reproduction of O. albidipennis will also contribute to the development of mass rearing programs for biological control agents in developing countries, such as Egypt.  相似文献   

17.
Genetically engineered (GE) cotton, MON 88702, is protected against certain sucking pests, such as plant bugs and thrips, by producing mCry51Aa2, a modified protein from Bacillus thuringiensis (Bt). Predatory pirate bugs (Orius spp.), natural enemies contributing to biological pest control, are also sensitive to the insecticidal protein when exposed continuously to high concentrations. We evaluated effects of MON 88702 on Orius majusculus when fed prey types with different mCry51Aa2 concentrations. When neonates were provided exclusively Tetranychus urticae spider mites reared on MON 88702 (high mCry51Aa2 content), adverse effects on predator survival and development were confirmed, compared with specimens fed prey from near-isogenic non-Bt cotton. When fed a mixture of T. urticae and Ephestia kuehniella eggs (mCry51Aa2-free), predator life table parameters were similar to the treatment where eggs were fed exclusively. When mCry51Aa2-containing spider mites were provided for a limited time at the beginning or the end of juvenile development, effects were less pronounced. While pirate bug nymphs showed similar consumption rates for prey from Bt and non-Bt cotton, choice experiments revealed a preference for E. kuehniella eggs over spider mites. Lepidopteran larvae (Spodoptera littoralis, high mCry51Aa2 content) or cotton aphids (Aphis gossypii, mCry51Aa2-free) reared on MON 88702 as alternative prey did not result in adverse effects on O. majusculus. Our study suggests limited risk of mCry51Aa2-producing cotton for O. majusculus, because its sensitivity for the Bt protein is relatively low and its natural food consists of diverse prey species with varying concentrations of Bt protein.  相似文献   

18.
This study investigated the olfactory responses of 3 thrips species [Frankliniella schultzei Trybom, F. occidentalis Pergrande and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] to cotton seedlings [Gossypium hirsutum L. (Malvales: Malvaceae)] simultaneously damaged by different combinations of herbivores. Cotton seedlings were damaged by foliar feeding Tetranychus urticae Koch (Trombidiforms: Tetranychidae), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), Aphis gossypii Glover (Hemiptera: Aphididae) or root feeding Tenebrio molitor L. (Coleoptera: Tenebrionidae). Thrips responses to plants simultaneously damaged by 2 species of herbivore were additive and equivalent to the sum of the responses of thrips to plants damaged by single herbivore species feeding alone. For example, F. occidentalis was attracted to T. urticae damaged plants but more attracted to undamaged plants than to plants damaged by H. armigera. Plants simultaneously damaged by low densities of T. urticae and H. armigera repelled F. occidentalis but as T. urticae density increased relative to H. armigera density, F. occidentalis attraction to coinfested plants increased proportionally. Thrips tabaci did not discriminate between undamaged plants and plants damaged by H. armigera but were attracted to plants damaged by T. urticae alone or simultaneously damaged by T. urticae and H. armigera. Olfactometer assays showed that simultaneous feeding by 2 herbivores on a plant can affect predator–prey interactions. Attraction of F. occidentalis to plants damaged by its T. urticae prey was reduced when the plant was simultaneously damaged by H. armigera, T. molitor, or A. gossypii and F. schultzei was more attracted to plants simultaneously damaged by T. urticae and H. armigera than to plants damaged by T. urticae alone. We conclude that plant responses to feeding by 1 species of herbivore are affected by responses to feeding by other herbivores. These plant‐mediated interactions between herbivore complexes affect the behavioral responses of thrips which vary between species and are highly context dependent.  相似文献   

19.
Generalist predators and the prey species Frankliniella occidentalis (Pergande) were periodically sampled from 64 weed species to determine their numerical interrelationships in three ecologically different locations in the eastern Mediterranean region of Turkey in 2002–2003. Adult and nymph stages of seven hemipteran predator species were recorded: Deraeocoris pallens Reuter, Geocoris arenarius (Jakovkev), Nabis punctatus Costa, Orius laevigatus Fieber, Orius majusculus (Reuter), Orius niger (Wolff) and Piocoris erythrocephalus (Peletie and Serville). The most common and abundant predator species was O. niger, which was found on 53 weed species in the winter–spring and summer–fall periods; the highest total numbers of O. niger adults per weed species were 139, 275, 266 and 325 on Urtica urens, Sinapis arvensis, Lamium amplexicaule and Mentha aquatica, respectively. Relatively higher numbers of Orius spp. nymphs were detected on the weed species Echium plantagineum, Cichorium intybus, Heliotropium europeum, Mentha aquatica and Polygonum aviculare. Orius spp. were attracted to flowers in significantly higher numbers than to leaves of the investigated weeds. No significant correlation was found between the numbers of Orius spp. and F. occidentalis on the major weed species, except E. plantagineum. These findings suggest that weeds may provide Orius spp. with resources other than prey, such as nectar and pollen, shelter, and breeding sites. The weed species on which relatively higher numbers of Orius adults and nymphs were found may be considered as candidates for studies aiming to include weeds to enhance integrated pest management of F. occidentalis on crops.  相似文献   

20.
1 A recent study revealed the capacity of the Orius insidiosus to suppress populations of Frankliniella spp. in field pepper during the spring when thrips are rapidly colonizing and reproducing. In this study, population abundance in pepper during spring, summer, and autumn was determined to understand better predator/prey dynamics under local conditions. Local movement between pepper flowers also was quantified to examine how population attributes of the predator allow suppression of rapidly moving populations of prey. 2 Randomized complete block experiments established in the autumn of 1998 and the spring of 1999 included treatments of biological and synthetic insecticides, which altered the population densities of predator and prey. Numbers of O. insidiosus in relation to prey were sufficient in 1998 to prevent build‐up of thrips populations. In 1999, populations of thrips were unable to recover from near extinction owing to persistence of the predator. The predator rapidly recolonized plots treated with insecticide. 3 Greenhouse plants of the same age as field plants were used to monitor movement by predators and prey. Movement by F. occidentalis was limited, whereas F. tritici and F. bispinosa moved rapidly to the greenhouse plants. The males of each thrips species moved more rapidly than the females. There was evidence that rapid movement assisted F. tritici and F. bispinosa in avoiding predation, but O. insidiosus also moved very rapidly to the greenhouse plants. This attribute explains the predator's ability to suppress thrips rapidly even when populations are rapidly colonizing and reproducing in the flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号