首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Transforming growth factor beta (TGFbeta), a multifunctional cytokine associated with vascular injury, is a potent inhibitor of cell proliferation. The current results demonstrate that the TGFbeta-induced growth arrest of vascular smooth muscle cells (VSMCs) is associated with cyclin A downregulation. TGFbeta represses the cyclin A gene through a cyclic AMP (cAMP) response element, which complexes with the cAMP response element binding protein (CREB). The CREB-cyclin A promoter interaction is hindered by TGFbeta, preceded by a TGFbeta receptor-dependent CREB phosphorylation. Induction of CREB phosphorylation with forskolin or 6bnz-cAMP mimics TGFbeta's inhibitory effect on cyclin A expression. Conversely, inhibition of CREB phosphorylation with a CREB mutant in which the phosphorylation site at serine 133 was changed to alanine (CREB-S133A) upregulated cyclin A gene expression. Furthermore, the CREB-S133A mutant abolished TGFbeta-induced CREB phosphorylation, cyclin A downregulation, and growth inhibition. Since we have previously shown that the novel PKC isoform protein kinase C delta (PKCdelta) is activated by TGFbeta in VSMCs, we tested the role of this kinase in CREB phosphorylation and cyclin A downregulation. Inhibition of PKCdelta by a dominant-negative mutant or by targeted gene deletion blocked TGFbeta-induced CREB phosphorylation and cyclin A downregulation. Taken together, our data indicate that phosphorylation of CREB stimulated by TGFbeta is a critical step leading to the inhibition of cyclin A expression and, thus, VSMC proliferation.  相似文献   

6.
CRH, the main regulator of the systemic response to stress, is also expressed in the skin where it is incorporated into a local homolog of the hypothalamic-pituitary-adrenal axis. To investigate the mechanisms of the induction of the CRH-proopiomelanocortin (POMC) response in human melanocytes, we used UVB as an epidermal-specific stressor. Human normal melanocytes cultured in vitro were irradiated with graded doses of UVB, and the CRH-POMC responses were measured in cell extracts and/or supernatants. UVB stimulated the CRH promoter, the CRH mRNA expression, and peptide release. The UVB-induced stimulation of the CRH promoter was suppressed by pharmacological inhibitors of protein kinase A or by plasmid overexpressing a dominant mutant cAMP response element (CRE)-binding protein (CREB). UVB also stimulated phosphorylation of CREB, binding of phosphorylated CREB to CRE sites in the CRH promoter, and activity of the reporter gene construct driven by consensus CRE sites. Mutation in the CRE site in the CRH promoter rendered the corresponding reporter gene construct less responsive to UVB in both normal and malignant melanocytes. In addition to CRH effects, UVB activated the POMC promoter, POMC mRNA expression, and ACTH release, whereas an antagonist of the CRH receptor 1 abrogated the UVB-stimulated induction of POMC. In conclusion, UVB induces CRH production in human melanocytes through stimulation of the protein kinase A pathway, with sequential involvement of CRH-CRH receptor 1 in the stimulation of POMC expression.  相似文献   

7.
8.
9.
10.
11.
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions.  相似文献   

12.
13.
14.
Tyrosine hydroxylase (TH) gene promoter activity is increased in PC12 cells that are treated with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Mutagenesis of either the cAMP responsive element (CRE) or the activator protein-1 element (AP1) within the TH gene proximal promoter leads to a dramatic inhibition of the TPA response. The TH CRE and TH AP1 sites are also independently responsive to TPA in minimal promoter constructs. TPA treatment results in phosphorylation of cAMP responsive element binding protein (CREB) and activation of cAMP-dependent protein kinase (PKA) in PC12 cells; hence, we tested whether CREB and/or PKA are essential for the TPA response. In CREB-deficient cells, the response of the full TH gene proximal promoter or the independent response of the TH CRE by itself to TPA is inhibited. The TPA-inducibility of TH mRNA is also blocked in CREB-deficient cells. Expression of the PKA inhibitor protein, PKI, also inhibits the independent response of the TH CRE to TPA. Our results support the hypothesis that TPA stimulates the TH gene promoter via signaling pathways that activate either the TH AP1 or TH CRE sites. Both signaling pathways are dependent on CREB and the TH CRE-mediated pathway is dependent on PKA.  相似文献   

15.
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1Ser-259 by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.  相似文献   

16.
17.
Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenindependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.  相似文献   

18.
A human PGHS-2 promoter fragment (300 BP) linked to the luciferase reporter was used to study the regulation of PGHS-2 gene expression in human amnion-derived WISH cells. A cyclic AMP (cAMP) response element (CRE) was found to be important in the induction of PGHS-2 gene expression. This was demonstrated by showing that coexpression of CREB stimulated native but not CRE mutant promoter and that IL-1beta and PMA induced less activity with the mutant promoter as compared to the native promoter. The effect of dexamethasone on IL-1beta and PMA induced promoter activities was further examined. IL-1beta or PMA induced activity was blocked by dexamethasone, whereas IL-1beta or PMA induced mutant activity was not responsive to dexamethasone. Direct activation of CRE by a cAMP elevating agent, isoproterenol, was found to be inhibited significantly dexamethasone. These results suggest that CRE may mediate the induction of PGHS-2 by IL-1beta and PMA as well as the suppression of expression by dexamethasone in amnion-derived cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号