首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH). Norepinephrine (NE) levels are increased by chemoreflex-dependent sympathetic overactivation and involved in pulmonary vascular remodeling. However, the underlying mechanisms of the remodeling induced by NE are poorly understood. In this study, we found that, in vivo, the expression of tyrosine hydroxylase and the concentration of plasma NE were increased in PAH rats compared with normal rats. Increases in ventricular hypertrophy and medial width of the pulmonary arteries were reversed by prazosin, α1-adrenoceptor (α1-AR) antagonists, in PAH rats. Elevated expression of α1D-AR was detected in PAH rats. In addition, prazosin reduced the increasing expression of PCNA, CyclinA and CyclinE induced by hypoxia. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of NE on proliferation of pulmonary artery smooth muscle cells (PASMCs). We revealed that NE promoted PASMCs viability, increased the expression of PCNA, CyclinA and CyclinE, made more cells from G0/G1 phase to G2/M + S phase and enhanced the microtubule formation. Above NE-induced changes could be suppressed by BMY 7378, an inhibitor of α1D-AR. Furthermore, ERK-1/2 pathway was activated by NE. U0126, a specific inhibitor for ERK-1/2, attenuated the NE-induced proliferation of PASMCs under normoxia and hypoxia. Taken together, our results suggest that NE which stimulates α1D-AR promotes proliferation of PASMCs and the effect is, at least in part, mediated via the ERK-1/2 pathway.  相似文献   

2.
Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.  相似文献   

3.
Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3 μM) and curcumin (3 μM) in comparison to 30 μM of resveratrol or curcumin alone. Resveratrol + curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21Waf/Cip1 in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21Waf/Cip1 knockout cells suggests this combination caused apoptosis through p21Waf/Cip1. Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2  Waf/Cip1 mediated inhibition of Hedgehog-Gli cascade.  相似文献   

4.
Buforin IIb, a novel cell-penetrating anticancer peptide derived from histone H2A, has been reported to induce mitochondria-dependent apoptosis in tumor cells. However, increasing evidence suggests that endoplasmic reticulum and mitochondria cooperate to signal cell death. In this study, we investigated the mechanism of buforin IIb-induced apoptosis in human cervical carcinoma HeLa cells by focusing on ER stress-mediated mitochondrial membrane permeabilization. Two-dimensional PAGE coupled with MALDI-TOF and western blot analysis showed that buforin IIb treatment of HeLa cells resulted in upregulation of ER stress proteins. PBA (ER stress inhibitor) and BAPTA/AM (Ca2+ chelator) pretreatment rescued viability of buforin IIb-treated cells through abolishing phosphorylation of SAPK/JNK and p38 MAPK. SP600125 (SAPK/JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated down-regulation of Bcl-xL/Bcl-2, mitochondrial translocation of Bax, and cytochrome c release from mitochondria. Taken together, our data suggest that the ER stress pathway has an important role in the buforin IIb-induced apoptosis in HeLa cells.  相似文献   

5.
Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.  相似文献   

6.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

7.
8.
Pharmacological ascorbate (AscH) selectively induces cytotoxicity in pancreatic cancer cells vs normal cells via the generation of extracellular hydrogen peroxide (H2O2), producing double-stranded DNA breaks and ultimately cell death. Catalytic manganoporphyrins (MnPs) can enhance ascorbate-induced cytotoxicity by increasing the rate of AscH oxidation and therefore the rate of generation of H2O2. We hypothesized that combining MnPs and AscH with the chemotherapeutic agent gemcitabine would further enhance pancreatic cancer cell cytotoxicity without increasing toxicity in normal pancreatic cells or other organs. Redox-active MnPs were combined with AscH and administered with or without gemcitabine to human pancreatic cancer cell lines, as well as immortalized normal pancreatic ductal epithelial cells. The MnPs MnT2EPyP (Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin pentachloride) and MnT4MPyP (Mn(III)tetrakis(N-methylpyridinium-4-yl) porphyrin pentachloride) were investigated. Clonogenic survival was significantly decreased in all pancreatic cancer cell lines studied when treated with MnP + AscH + gemcitabine, whereas nontumorigenic cells were resistant. The concentration of ascorbate radical (Asc•−, an indicator of oxidative flux) was significantly increased in treatment groups containing MnP and AscH. Furthermore, MnP + AscH increased double-stranded DNA breaks in gemcitabine-treated cells. These results were abrogated by extracellular catalase, further supporting the role of the flux of H2O2. In vivo growth was inhibited and survival increased in mice treated with MnT2EPyP, AscH, and gemcitabine without a concomitant increase in systemic oxidative stress. These data suggest a promising role for the use of MnPs in combination with pharmacologic AscH and chemotherapeutics in pancreatic cancer.  相似文献   

9.
Follicular atresia mainly results from apoptosis of granulosa cells (GCs). Our previous microRNA array data indicated that the miRNA let-7g level increases significantly during porcine ovary follicular atresia. It is uncertain if GCs apoptosis is mediated by microRNA let-7g. In this study, the expression levels of the apoptosis-associated genes CASP3, BAX and BIM were significantly upregulated when let-7g mimic was transfected into porcine GCs, and the anti-apoptotic genes BCL-2 and MCL-1 were significantly downregulated. The apoptosis rate was measured by flow cytometry, and our results indicated that let-7g significantly enhanced GCs apoptosis. In further studies, we found that overexpression of let-7g induced the expression of FoxO1 in GCs and led to nuclear accumulation of dephosphorylated FoxO1. In addition, the effect of let-7g on FoxO1 expression and dephosphorylation resulted from repression of the expression of the MAP3K1 gene in porcine GCs. The site on MAP3K1 mRNA targeted by let-7g was confirmed by luciferase reporter assay. The anti-apoptotic effect of MAP3K1 was validated by silencing MAP3K1 using small interfering RNA technology. In conclusion, our data indicate that let-7g induces porcine GCs apoptosis by inhibiting the MAP3K1 gene, which promotes FoxO1 expression and dephosphorylation with nuclear accumulation.  相似文献   

10.
The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used.Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis–Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60–80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides.The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase.Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed.Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.  相似文献   

11.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

12.
Pentameric ligand-gated ion channels (pLGICs) mediate numerous physiological processes, including fast neurotransmission in the brain. They are targeted by a large number of clinically-important drugs and disruptions to their function are associated with many neurological disorders. The phosphorylation of pLGICs can result in a wide range of functional consequences. Indeed, many neurological disorders result from pLGIC phosphorylation. For example, chronic pain is caused by the protein kinase A-mediated phosphorylation of α3 glycine receptors and nicotine addiction is mediated by the phosphorylation of α4- or α7-containing nicotinic receptors. A recent study demonstrated that phosphorylation can induce a global conformational change in a pLGIC that propagates to the neurotransmitter-binding site. Here we present evidence that phosphorylation-induced global conformational changes may be a universal phenomenon in pLGICs. This raises the possibility of designing drugs to specifically treat disease-modified pLGICs. This review summarizes some of the opportunities available in this area.  相似文献   

13.
Oxidative-stress-driven lipid peroxidation (LPO) is involved in the pathogenesis of several human diseases, including cancer. LPO products react with cellular proteins changing their properties, and with DNA bases to form mutagenic etheno-DNA adducts, removed from DNA mainly by the base excision repair (BER) pathway.One of the major reactive aldehydes generated by LPO is 4-hydroxy-2-nonenal (HNE). We investigated the effect of HNE on BER enzymes in human cells and in vitro. K21 cells pretreated with physiological HNE concentrations were more sensitive to oxidative and alkylating agents, H2O2 and MMS, than were untreated cells. Detailed examination of the effects of HNE on particular stages of BER in K21 cells revealed that HNE decreases the rate of excision of 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC), but not of 8-oxoguanine. Simultaneously HNE increased the rate of AP-site incision and blocked the re-ligation step after the gap-filling by DNA polymerases. This suggested that HNE increases the number of unrepaired single-strand breaks (SSBs) in cells treated with oxidizing or methylating agents. Indeed, preincubation of cells with HNE and their subsequent treatment with H2O2 or MMS increased the number of nuclear poly(ADP-ribose) foci, known to appear in cells in response to SSBs. However, when purified BER enzymes were exposed to HNE, only ANPG and TDG glycosylases excising ɛA and ɛC from DNA were inhibited, and only at high HNE concentrations. APE1 endonuclease and 8-oxoG-DNA glycosylase 1 (OGG1) were not inhibited. These results indicate that LPO products exert their promutagenic action not only by forming DNA adducts, but in part also by compromising the BER pathway.  相似文献   

14.
Accumulated evidence points to a key role for endocannabinoids in cell migration, and here we sought to characterize the role of these substances in early events that modulate communication between endothelial cells and leukocytes. We found that 2-arachidonoylglycerol (2-AG) was able to initiate and complete the leukocyte adhesion cascade, by modulating the expression of selectins. A short exposure of primary human umbilical vein endothelial cells (HUVECs) to 2-AG was sufficient to prime them towards an activated state: within 1 h of treatment, endothelial cells showed time-dependent plasma membrane expression of P- and E-selectins, which both trigger the initial steps (i.e., capture and rolling) of leukocyte adhesion. The effect of 2-AG was mediated by CB1 and CB2 receptors and was long lasting, because endothelial cells incubated with 2-AG for 1 h released the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) for up to 24 h. Consistently, TNF-α-containing medium was able to promote leukocyte recruitment: human Jurkat T cells grown in conditioned medium derived from 2-AG-treated HUVECs showed enhanced L-selectin and P-selectin glycoprotein ligand-1 (PSGL1) expression, as well as increased efficiency of adhesion and trans-migration. In conclusion, our in vitro data indicate that 2-AG, by acting on endothelial cells, might indirectly promote leukocyte recruitment, thus representing a potential therapeutic target for treatment of diseases where impaired endothelium/leukocyte interactions take place.  相似文献   

15.
MicroRNAs (miRNAs) play important roles in epithelial-to-mesenchymal transition (EMT). Moreover, hyperglycaemia induces damage to renal tubular epithelial cells, which may lead to EMT in diabetic nephropathy. However, the effects of miRNAs on EMT in diabetic nephropathy are poorly understood. In the present study, we found that the level of microRNA-23b (miR-23b) was significantly decreased in high glucose (HG)-induced human kidney proximal tubular epithelial cells (HK2) and in kidney tissues of db/db mice. Overexpression of miR-23b attenuated HG-induced EMT, whereas knockdown of miR-23b induced normal glucose (NG)-mediated EMT in HK2 cells. Mechanistically, miR-23b suppressed EMT in diabetic nephropathy by targeting high mobility group A2 (HMGA2), thereby repressing PI3K-AKT signalling pathway activation. Additionally, HMGA2 knockdown or inhibition of the PI3K-AKT signalling pathway with LY294002 mimicked the effects of miR-23b overexpression on HG-mediated EMT, whereas HMGA2 overexpression or activation of the PI3K-AKT signalling pathway with BpV prevented the effects of miR-23b on HG-mediated EMT. We also confirmed that overexpression of miR-23b alleviated EMT, decreased the expression levels of EMT-related genes, ameliorated renal morphology, glycogen accumulation, fibrotic responses and improved renal functions in db/db mice. Taken together, we showed for the first time that miR-23b acts as a suppressor of EMT in diabetic nephropathy through repressing PI3K-AKT signalling pathway activation by targeting HMGA2, which maybe a potential therapeutic target for diabetes-induced renal dysfunction.  相似文献   

16.
The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.  相似文献   

17.
Bongkrekic acid (BKA) inhibits adenine nucleotide translocator (ANT) and suppresses ADP/ATP exchange in the mitochondrial inner membrane. Previously, we demonstrated that BKA exhibited cytotoxic effects on 4T1 tumor cells, depending on the cell number in the culture, but not on NIH3T3 cells. However, the cause of this differential sensitivity was unelucidated. Here we demonstrate that BKA reduced the O2 consumption in both cell lines and increased the mitochondrial membrane potential, thereby facilitating glucose consumption. BKA reduced cellular ATP in 4T1 cells in a dose-dependent manner but not in NIH3T3 cells. The cellular ATP of 4T1 cells was decreased with a reduced glucose concentration in the media, but that of NIH3T3 cells remained constant. We also demonstrated that BKA-induced cell death in both cell lines in low glucose media; however, the susceptibility to the reduced glucose concentration was slightly higher in 4T1 cells, which may be attributed to the difference in the dependency on glycolysis as their energy source. These results indicate that 4T1 tumor cells rely heavily on glucose for energy production. Our data demonstrate that BKA disturbs ATP production in mitochondria and increases the susceptibility to a low glucose condition.  相似文献   

18.
19.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

20.
Cardiac oxidative stress is an early event associated with diabetic cardiomyopathy, triggered by hyperglycemia. We tested the hypothesis that targeting left-ventricular (LV) reactive oxygen species (ROS) upregulation subsequent to hyperglycemia attenuates type 1 diabetes-induced LV remodeling and dysfunction, accompanied by attenuated proinflammatory markers and cardiomyocyte apoptosis. Male 6-week-old mice received either streptozotocin (55 mg/kg/day for 5 days), to induce type 1 diabetes, or citrate buffer vehicle. After 4 weeks of hyperglycemia, the mice were allocated to coenzyme Q10 supplementation (10 mg/kg/day), treatment with the angiotensin-converting-enzyme inhibitor (ACE-I) ramipril (3 mg/kg/day), treatment with olive oil vehicle, or no treatment for 8 weeks. Type 1 diabetes upregulated LV NADPH oxidase (Nox2, p22phox, p47phox and superoxide production), LV uncoupling protein UCP3 expression, and both LV and systemic oxidative stress (LV 3-nitrotyrosine and plasma lipid peroxidation). All of these were significantly attenuated by coenzyme Q10. Coenzyme Q10 substantially limited type 1 diabetes-induced impairments in LV diastolic function (E:A ratio and deceleration time by echocardiography, LV end-diastolic pressure, and LV −dP/dt by micromanometry), LV remodeling (cardiomyocyte hypertrophy, cardiac fibrosis, apoptosis), and LV expression of proinflammatory mediators (tumor necrosis factor-α, with a similar trend for interleukin IL-1β). Coenzyme Q10's actions were independent of glycemic control, body mass, and blood pressure. Coenzyme Q10 compared favorably to improvements observed with ramipril. In summary, these data suggest that coenzyme Q10 effectively targets LV ROS upregulation to limit type 1 diabetic cardiomyopathy. Coenzyme Q10 supplementation may thus represent an effective alternative to ACE-Is for the treatment of cardiac complications in type 1 diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号