首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Acute myeloid leukemia (AML) is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.  相似文献   

2.
Non-small-cell lung cancer (NSCLC) accounts for nearly 85% of lung cancer cases. LukS-PV, one of the two components of Panton-Valentine leucocidin (PVL), is produced by Staphylococcus aureus. The present study showed that LukS-PV can induce apoptosis in human acute myeloid leukemia (AML) lines (THP-1 and HL-60). However, the role of LukS-PV in NSCLC is unclear. In this study, we treated NSCLC cell lines A549 and H460 and a normal lung cell line, 16HBE, with LukS-PV and investigated the biological roles of LukS-PV in NSCLC. Cells were treated with varying concentrations of LukS-PV and cell viability was evaluated by CCK8 and EdU assay. Flow cytometry was used to detect cell apoptosis and analyze the cell cycle, and the expression of apoptosis and cell cycle-associated proteins and genes were identified by western blotting analysis and qRT-polymerase chain reaction, respectively. We found that LukS-PV inhibited the proliferation of NSCLC cells but had little cytotoxicity in normal lung cells. LukS-PV induced NSCLC cell apoptosis and increased the BAX/BCL-2 ratio, triggering S-phase arrest in A549 and H460 cells while increasing P21 expression and decreasing CDK2, cyclin D1, and cyclin A2 expression. We also observed increased P-p38 and P-ERK in NSCLC cells treated with LukS-PV. Treatment of NSCLC with LukS-PV combined with p38 and ERK inhibitors reversed the pro-apoptotic and pro-cell cycle arrest effects of LukS-PV. Overall, these findings indicate that LukS-PV has anti-tumor effects in NSCLC and may contribute to the development of anti-cancer agents.  相似文献   

3.
BackgroundThe dried heartwood of Caesalpinia sappan L. is traditionally prescribed in the formula of traditional Chinese medicine (TCM) for the treatment of acute myeloid leukemia (AML), while nothing is yet known of the active fractions and the underlying mechanisms.PurposeThis study aims to investigate the effect of the ethyl acetate extract of the dried heartwood of Caesalpinia sappan L. (C-A-E) on induction of apoptosis and promotion of differentiation in vitro and anti-AML activity in vivo.Study design/methodsThe aqueous extract was sequentially separated with solvents of increasing polarity and the active fraction was determined through the inhibition potency. The inhibition of the active fraction on cell viability, proliferation and colony formation was performed in different AML cells. Induction of apoptosis and the promotion of differentiation were further determined. Then, the level of the reactive oxygen species (ROS) and its potential role were assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice.ResultsC-A-E exhibited the highest inhibition on the cell viability of HL-60 cells. Meanwhile, C-A-E significantly suppressed the proliferation and the colony formation ability of HL-60 and Kasumi-1 cells. Moreover, C-A-E significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. C-A-E also reduced the level of mitochondrial membrane potential, promoted the release of cytochrome C, decreased the Bcl-2/Bax ratio, and promoted the cleavage of caspase-9 and -3. In addition, Mdivi-1 (mitochondrial fission blocker) remarkably reduced the apoptosis caused by C-A-E. Meanwhile, C-A-E also induced the expression of Mff and Fis1 and increased the location of Drp1 in mitochondria. Furthermore, C-A-E obviously promoted the differentiation of AML cells characterized by the typic morphological changes, the increased NBT positive cells, as well as the increased CD11b and CD14 levels. Notably, C-A-E significantly enhanced the intracellular ROS level. Moreimportantly, C-A-E-mediated apoptosis and differentiation of HL-60 cells was significantly mitigated by NAC. Additionally, C-A-E also exhibited an obvious anti-AML effect in NOD/SCID mice with the injection of HL-60 cells.ConclusionsC-A-E exhibited an inhibitory effect on AML cells by inducing mitochondrial apoptosis and promoting differentiation, both of which were highly correlated to the activation of ROS.  相似文献   

4.
We have shown that gypenosides (Gyp) induced cell cycle arrest and apoptosis in many human cancer cell lines. However, there are no reports showing that show Gyp acts on human leukemia HL-60 cells in vitro and in a murine xenograft model in vivo. In the present study effects of Gyp on cell morphological changes and viability, cell cycle arrest and induction of apoptosis in vitro and effects on Gyp in an in vivo murine xenograft model. Results indicated that Gyp induced morphological changes, decreased cell viability, induced G0/G1 arrest, DNA fragmentation and apoptosis (sub-G1 phase) in HL-60 cells. Gyp increased reactive oxygen species production and Ca2+ levels but reduced mitochondrial membrane potential in a dose- and time-dependent manner. Gyp also changed one of the primary indicators of endoplasmic reticulum (ER) stress due to the promotion of ATF6-α and ATF4-α associated with Ca2+ release. Gyp reduced the ratio of Bcl-2 to Bax due to an increase in the pro-apoptotic protein Bax and inhibited levels of the anti-apoptotic protein Bcl-2. Oral consumption of Gyp reduced tumor size of HL-60 cell xenograft mode mice in vivo. These results provide new information on understanding mechanisms by which Gyp induces cell cycle arrest and apoptosis in vitro and in vivo.  相似文献   

5.

Background  

Leukemia is one of the most life-threatening cancers today, and acute promyelogenous leukemia (APL) is a common type of leukemia. Many natural compounds have already been found to exhibit significant anti-tumor effects. Lycorine, a natural alkaloid extracted from Amaryllidaceae, exhibited anti-leukemia effects in vitro and in vivo. The survival rate of HL-60 cells exposed to lycorine was decreased, cell growth was slowed down, and cell regeneration potential was inhibited. HL-60 cells exhibited typical apoptotic characteristic. Lycorine can suppress leukemia growth and reduce cell survival and inducing apoptosis of tumor cells. The purpose of this work is to elucidate the mechanism by which lycorine induces APL cells.  相似文献   

6.
As part of our continuing search for potential anticancer drug candidates in YC-1 analogs, several 1-benzyl-3-(substituted aryl)-5-methylfuro[3,2-c]pyrazoles were synthesized and evaluated for their cytotoxicity against HL-60 cell line. Among these compounds, 1-benzyl-3-(5-hydroxymethyl-2-furyl)-5-methylfuro[3,2-c]pyrazole (1) showed more potency than YC-1. Through investigation of action mechanism, it was found that compound 1 induced terminal differentiation of HL-60 cells toward granulocyte lineage and promoted HL-60 cell differentiation by regulation of Bcl-2 and c-Myc proteins. Meanwhile, compound 1 also demonstrated apoptosis inducing effect. Such anti-leukemia mechanism of action is apparently different from that of YC-1 which mainly works by inducing apoptosis, but not cell differentiation. Therefore, compound 1 is identified here as a new lead compound of cell differentiating agent and apoptosis inducer for further development of new anti-leukemia agents.  相似文献   

7.
Acute myeloid leukemia (AML) is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA) has been successfully introduced to treat acute promyelocytic leukemia (APL), it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA) were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA). Furazolidone (FZD) was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.  相似文献   

8.
9.
Previous studies revealed that 1,25-dihydroxyvitamin D(3) (calcitriol)-induced differentiation of human promyelocytic leukemia cells leads to an increased resistance of the cells to apoptosis-inducing agents. However many attempts were made to explain it, the mechanism underlying this effect still remains unclear. Our results suggest that the acquired resistance to apoptosis-inducing agents in HL-60 cells is not mediated by the CD95 receptor/ligand system. The expression of CD95 on the surface of HL-60 cells is very low and does not change during the calcitriol-induced differentiation of HL-60 cells. Studies presented here provide a strong indication that this receptor is unable to transmit the death signal in either differentiated or undifferentiated HL-60 cells. We therefore asked if evading apoptosis by differentiated human leukemia HL-60 cells may be caused by their increased sensitivity to growth factors contained in fetal calf serum. This study demonstrates that HL-60 promyelocytic leukemia cells, differentiated by exposure to calcitriol, undergo apoptosis in serum-free conditions. As low as 1% of fetal calf serum is enough to prevent cell death of differentiated HL-60 cells. The ability of 1% fetal calf serum to prevent apoptosis can be blocked by the specific inhibitor of phosphatidylinositol 3-kinase, LY294002. We then tried to find out which component of fetal calf serum may be able to prevent serum-free cell death of differentiated cells. It appeared that serum-free cell death of differentiated HL-60 cells is reversed by addition of 10 microM insulin to the culture medium. The antiapoptotic activity of insulin can be inhibited by LY294002. Moreover, insulin increases the viability of differentiated, but not of undifferentiated, HL-60 cells.  相似文献   

10.
BackgroundCeefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice.MethodsU937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice.ResultsCeefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage.ConclusionsThese results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine.General significance:This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.  相似文献   

11.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.  相似文献   

12.
13.
14.
By means of an unbiased, automated fluorescence microscopy-based screen, we identified the epidermal growth factor receptor (EGFR) inhibitors erlotinib and gefitinib as potent enhancers of the differentiation of HL-60 acute myeloid leukemia (AML) cells exposed to suboptimal concentrations of vitamin A (all-trans retinoic acid, ATRA) or vitamin D (1α,25-hydroxycholecalciferol, VD). Erlotinib and gefitinib alone did not promote differentiation, yet stimulated the acquisition of morphological and biochemical maturation markers (including the expression of CD11b and CD14 as well as increased NADPH oxidase activity) when combined with either ATRA or VD. Moreover, the combination of erlotinib and ATRA or VD synergistically induced all the processes that are normally linked to terminal hematopoietic differentiation, namely, a delayed proliferation arrest in the G0/G1 phase of the cell cycle, cellular senescence, and apoptosis. Erlotinib potently inhibited the (auto)phosphorylation of mitogen-activated protein kinase 14 (MAPK14, best known as p38MAPK) and SRC family kinases (SFKs). If combined with the administration of ATRA or VD, the inhibition of p38MAPK or SFKs with specific pharmacological agents mimicked the pro-differentiation activity of erlotinib. These data were obtained with 2 distinct AML cell lines (HL-60 and MOLM-13 cells) and could be confirmed on primary leukemic blasts isolated from the circulation of AML patients. Altogether, these findings point to a new regimen for the treatment of AML, in which naturally occurring pro-differentiation agents (ATRA or VD) may be combined with EGFR inhibitors.  相似文献   

15.
《Phytomedicine》2015,22(5):545-552
BackgroundNatural products are one of the most important sources of drugs used in pharmaceutical therapeutics. Screening of several natural products in the search for novel anticancer agents against human leukemia HL-60 cells led us to identify potent apoptosis-inducing activity in the essential oil fraction from Artemisia capillaris Thunb. flower.MethodsThe cytotoxic effects of extracts were assessed on human leukemia HL-60 cells by XTT assay. Induction of apoptosis was assessed by analysis of DNA fragmentation and nuclear morphological change. The plant name was checked with the plant list website (http://www.theplantlist.org).ResultsA purified compound from the essential oil fraction from Artemisia capillaris Thunb. flower that potently inhibited cell growth in human leukemia HL-60 cells was identified as capillin. The cytotoxic effect of capillin in cells was associated with apoptosis. When HL-60 cells were treated with 106 M capillin for 6 h, characteristic features of apoptosis such as DNA fragmentation and nuclear fragmentation were observed. Moreover, activation of c-Jun N-terminal kinase (JNK) was detected after treatment with capillin preceding the appearance of characteristic properties of apoptosis. Release of cytochrome c from mitochondria was also observed in HL-60 cells that had been treated with capillin.ConclusionCapillin induces apoptosis in HL-60 cells via the mitochondrial apoptotic pathway, which might be controlled through JNK signaling. Our results indicate that capillin may be a potentially useful anticancer drug that could enhance therapeutic efficacy.  相似文献   

16.
Abnormal proliferation, apoptosis repression and differentiation blockage of hematopoietic stem/progenitor cells have been characterized to be the main reasons leading to acute myeloid leukemia (AML). Previous studies showed that miR-29a and miR-29b could function as tumor suppressors in leukemogenesis. However, a comprehensive investigation of the function and mechanism of miR-29 family in AML development and their potentiality in AML therapy still need to be elucidated. Herein, we reported that the family members, miR-29a, -29b and -29c, were commonly downregulated in peripheral blood mononuclear cells and bone marrow (BM) CD34+ cells derived from AML patients as compared with the healthy donors. Overexpression of each miR-29 member in THP1 and NB4 cells markedly inhibited cell proliferation and promoted cell apoptosis. AKT2 and CCND2 mRNAs were demonstrated to be targets of the miR-29 members, and the role of miR-29 family was attributed to the decrease of Akt2 and CCND2, two key signaling molecules. Significantly increased Akt2, CCND2 and c-Myc levels in the AML cases were detected, which were correlated with the decreased miR-29 expression in AML blasts. Furthermore, a feed-back loop comprising of c-Myc, miR-29 family and Akt2 were found in myeloid leukemogenesis. Reintroduction of each miR-29 member partially corrected abnormal cell proliferation and apoptosis repression and myeloid differentiation arrest in AML BM blasts. An intravenous injection of miR-29a, -29b and -29c in the AML model mice relieved leukemic symptoms significantly. Taken together, our finding revealed a pivotal role of miR-29 family in AML development and rescue of miR-29 family expression in AML patients could provide a new therapeutic strategy.  相似文献   

17.
Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.  相似文献   

18.
It has been reported that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase suppress cell proliferation and induce apoptosis. One inhibitor which induces apoptosis is mevastatin. However, the molecular mechanism of apoptosis induction is not well understood so the effects of mevastatin on various functions of HL-60 cells were investigated. We confirmed that mevastatin activated caspase-3 by release of cytochrome c (Cyt. c) from mitochondria through a membrane permeability transition mechanism and also induced typical fragmentation and ladder formation of DNA in HL-60 cells. These effects were inhibited by mevalonate, a metabolic intermediate of cholesterol biosynthesis. Mevalonate and geranylgeraniol (GGOH) inhibited DNA fragmentation whereas farnesol (FOH) did not. Mevastatin also induced cell differentiation to monocytic cells via a mevalonate inhibitable mechanism. Furthermore, mevastatin decreased the amount of an isoprenylated membrane bound Rap1 small GTPase concomitant with an increase in cytosolic Rap1 which occurred before apoptosis and differentiation. On the contrary, both mevastatin and geranylgeranylacetone (GGA), which competes with geranylgeranyl pyrophosphate, induced membrane depolarization of isolated mitochondria without swelling and Cyt. c release. These results suggest that mevastatin-induced apoptosis of HL-60 cells might be caused indirectly by activation of the caspase cascade through the modulation of mitochondrial functions and that some relationship between a certain small GTPase molecule, such as Rap1, and mevastatin-induced apoptosis may exist.  相似文献   

19.
Human myeloblastic cell line HL-60 cells undergo apoptosis during in vitro culture in a cell density-dependent manner, and this cell density-dependent apoptosis was observed when the concentration of cultured cells exceeded 8–10 × 105 cells/ml. Dimethyl sulfoxide (DMSO), a differentiation inducer of HL-60 cells, did not amplify, but rather potently inhibited, this apoptosis. In a low density culture condition, DMSO attenuated proliferation of HL-60 cells in spite of its inhibition of apoptosis. In contrast, DMSO did support cell survival under high cell density conditions, and DMSO-treated HL-60 cells reached an extremely high concentration of 2–3 × 106 cells/ml, a condition which could never be possible in a usual culture environment. Thus, DMSO exerted dual effects on cell proliferation, i.e., growth inhibition and apoptosis inhibition, and the sum of these effects resulted in an apparently distinct phenomenon according to the culture conditions including cell density. J. Cell. Physiol. 174:135–143, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号