首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic leukotriene B4 (LTB4) and its ω-oxidation products, 20 OH-LT4 and 20 COOH-LTB4, were tested for their ability to induce the aggregation of rat neutrophils invitro, to contract the guinea pig parenchymal strip invitro and to cause vascular permeability changes in rabbit skin invivo. 20 OH-LTB4 had 10, 100 and 20% of the activity of LTB4 in the neutrophil aggregation, parenchymal strip and vascular permeability assays respectively. 20 C00H-LTB4 was inactive invivo and showed <1% of the activity of LTB4invitro. These results show that while ω-oxidation is a route for biological inactivation of LTB4, 20 OH-LTB4 still retains significant biological activity.  相似文献   

2.
3.
The mechanism responsible for the initial steps in the anaerobic degradation of trans-cinnamate and -phenylalkane carboxylates by the purple non-sulphur photosynthetic bacterium Rhodopseudomonas palustris was investigated. Phenylacetate did not support growth and there was a marked CO2 dependence for growth on acids with greater side-chain lengths. Here, CO2 was presumably acting as a redox sink for the disposal of excess reducing equivalents. Growth on benzoate did not require the addition of exogenous CO2. Aromatic acids with an odd number of side-chain carbon atoms (3-phenylpropionate, 5-phenylvalerate, 7-phenylheptanoate) gave greater apparent molar growth yields than those with an even number of side-chain carbon atoms (4-phenylbutyrate, 6-phenylhexanoate, 8-phenyloctanoate). HPLC analysis revealed that phenylacetate accumulated and persisted in the culture medium during growth on these latter compounds. Cinnamate and benzoate transiently accumulated in the culture medium during growth on 3-phenylpropionate, and benzoate alone accumulated transiently during the course of trans-cinnamate degradation. The transient accumulation of 4-phenyl-2-butenoic acid occurred during growth on 4-phenylbutyrate, and phenylacetate accumulated to a 1:1 molar stoichiometry with the initial 4-phenylbutyrate concentration. It is proposed that the initial steps in the anaerobic degradation of trans-cinnamate and the group of acids from 3-phenylpropionate to 8-phenyloctanoate involves -oxidation of the side-chain.Abbreviation 3-PP 3-phenylpropionic acid - 4-PB 4-phenylbutyric acid - 5-PV 5-phenylvaleric acid - 6-PH 6-phenylhexanoic acid - 7-PH 7-phenylheptanoic acid - 8-PO 8-phenyloctanoic acid - 4-P2B 4-phenyl-2-butenoic acid - GC/MS Gas chromatography/Mass spectrometry - HPLC High-pressure liquid chromatography  相似文献   

4.
It is now clear that peroxisomes play a crucial role in many cellular processes, including the -oxidation of very long chain fatty acids. Recently, mammalian peroxisomes have been shown to contain the antioxidant enzymes, superoxide dismutase and glutathione peroxidase, in addition to catalase. The presence of these enzymes in peroxisomes suggests that peroxisomes undergo oxidative stress in normal and disease states. As an indicator of the potential impact of an oxidative stress on peroxisomal functions, we evaluated the effect of endotoxin exposure on the -oxidation enzyme system in rat liver. Peroxisomes were isolated from liver homogenates by differential and density gradient centrifugations. Endotoxin treatment decreased the -oxidation of lignoceric acid to 56% of control values (p<0.01). The specific activity of the rate limiting enzyme in the system, acyl-CoA oxidase, was decreased to 73% of control values (p<0.05). Immunoblot analysis revealed a 25% decrease in the 21KD subunit of the acyl-CoA oxidase protein. In contrast, the protein levels of the other enzymes in the pathway, trifunctional protein and 3-ketoacyl-CoA thiolase, were increased by 10 and 15%, respectively. These findings suggest that impairment of -oxidation of lignoceric acid by endotoxin treatment is due primarily to a reduction in the activity and protein level of the key enzyme, acyl-CoA oxidase. Oxidative stresses such as endotoxin exposure may have deleterious effects on important peroxisomal functions, such as -oxidation of very long chain fatty acids.  相似文献   

5.
The ability of glyoxysomes from sunflower (Helianthusannuus L.) cotyledons to completely degrade long-chain fatty acids into their constituent acetyl units and the time courses of the appearance of acyl-CoA intermediates during β-oxidation have been studied using 14C-labelled substrates at non-saturating concentrations (1.3 to 1.8 μmol · l−1). [14C]Acetyl-CoA was formed from [18-14C]oleate metabolized at a yield of up to 80%, and from [U-14C]palmitate and [U-14C]linoleate to an extent indicating that a maximum of 80% and 30%, respectively, of the substrate β-oxidized had been degraded beyond the C4-CoA intermediate level. To obtain the latter values, an acetyl-CoA-removing system was required during β-oxidation. Constant re-oxidation of the NADH formed during the β-oxidation did not replace the effect of acetyl-CoA removal. Neither the completeness of the linoleate β-oxidation nor the rate of reaction were influenced by NADPH. Medium- and short-chain acyl-CoA intermediates were predominantly detected during β-oxidation of the long-chain substrates employed. The degradation of these intermediates appeared to be stimulated mainly in the presence of an acetyl-CoA-removing system. The time courses of the appearance of intermediates corresponded to a precursor-product relationship between intermediates of decreasing chain lengths. Received: 12 December 1997 / Accepted: 26 January 1998  相似文献   

6.
Chiral amines in enantiopure forms are important chemical building blocks, which are most well recognized in the pharmaceutical industries for imparting desirable biological activity to chemical entities. A number of synthetic strategies to produce chiral amines via biocatalytic as well as chemical transformation have been developed. Recently, ω-transaminase (ω-TA) has attracted growing attention as a promising catalyst which provides an environment-friendly access to production of chiral amines with exquisite stereoselectivity and excellent catalytic turnover. To obtain enantiopure amines using ω-TAs, either kinetic resolution of racemic amines or asymmetric amination of achiral ketones is employed. The latter is usually preferred because of twofold higher yield and no requirement of conversion of a ketone product back to racemic amine. However, the choice of a production process depends on several factors such as reaction equilibrium, substrate reactivity, enzyme inhibition, and commercial availability of substrates. This review summarizes the biochemical features of ω-TA, including reaction chemistry, substrate specificity, and active site structure, and then introduces recent advances in expanding the scope of ω-TA reaction by protein engineering and public database searching. We also address crucial factors to be considered for the development of efficient ω-TA processes.  相似文献   

7.
During the glyoxysomal β-oxidation of long-chain acyl-CoAs, short-chain intermediates accumulate transiently (Kleiter and Gerhardt 1998, Planta 206: 125–130). The studies reported here address the underlying factors. The studies concentrated upon the aspects of (i) chain length specificity and (ii) metabolic regulation of the glyoxysomal β-oxidation of sunflower (Helianthus annuus L.) cotyledons. (i) Concentration-rate curves of the β-oxidation of acyl-CoAs of various chain lengths showed that the β-oxidation activity towards long-chain acyl-CoAs was higher than that towards short-chain acyl-CoAs at substrate concentrations <20 μM. At substrate concentrations >20 μM, long-chain acyl-CoAs were β-oxidized more slowly than short-chain acyl-CoAs because the β-oxidation of long-chain acyl-CoAs is subject to substrate inhibition which had already started at 5–10 μM substrate concentration and results from an inhibition of the multifunctional protein (MFP) of the β-oxidation reaction sequence. However, low concentrations of free long-chain acyl-CoAs are rather likely to exist within the glyoxysomes due to the acyl-CoA-binding capacity of proteins. Consequently, the β-oxidation rate towards a parent long-chain acyl-CoA will prevail over that towards the short-chain intermediates. (ii) Low concentrations (≤5 μM) of a long-chain acyl-CoA exerted an inhibitory effect on the β-oxidation rate of butyryl-CoA. Reversibility of the inhibition was observed as well as metabolization of the inhibiting long-chain acyl-CoA. Regarding the activities of the individual β-oxidation enzymes towards their C4 substrates in the presence of a long-chain acyl-CoA, the MFP activity exhibited strong inhibition. This inhibition appears not to be due to the detergent-like physical properties of long-chain acyl-CoAs. The results of the studies, which are consistent with the observation that short-chain intermediates accumulate transiently during complete degradation of a long-chain acyl-CoA, suggest that the substrate concentration-dependent chain-length specificity of the β-oxidation and a metabolic regulation at the level of MFP are factors determining this transient accumulation. Received: 2 February 1999 / Accepted: 14 April 1999  相似文献   

8.
Novel ω-N-amino analogs of B13 (Class E) were designed, synthesized and tested as inhibitors of acid ceramidase (ACDase) and potential anticancer agents deprived of unwanted lysosomal destabilization and ACDase proteolytic degradation properties of LCL204 [Szulc, Z. M.; Mayroo, N.; Bai, A.; Bielawski, J.; Liu, X.; Norris, J. S.; Hannun, Y. A.; Bielawska, A. Bioorg. Med. Chem. 2008, 16, 1015].Representative analog LCL464, (1R,2R)-2-N-(12′-N,N-dimethylaminododecanoyl amino)-1-(4″-nitrophenyl)-1,3-propandiol, inhibited ACDase activity in vitro, with a similar potency as B13 but higher than LCL204. LCL464 caused an early inhibition of this enzyme at a cellular level corresponding to decrease of sphingosine and specific increase of C14- and C16-ceramide. LCL464 did not induce lysosomal destabilization nor degradation of ACDase, showed increased cell death demonstrating inherent anticancer activity in a wide range of different cancer cell lines, and induction of apoptosis via executioner caspases activation. LCL464 represents a novel structural lead as chemotherapeutic agent acting via the inhibition of ACDase.  相似文献   

9.

The linear C6 dicarboxylic acid adipic acid is an important bulk chemical in the petrochemical industry as precursor of the polymer nylon-6,6-polyamide. In recent years, efforts were made towards the biotechnological production of adipate from renewable carbon sources using microbial cells. One strategy is to produce adipate via a reversed β-oxidation pathway. Hitherto, the adipate titers were very low due to limiting enzyme activities for this pathway. In most cases, the CoA intermediates are non-natural substrates for the tested enzymes and were therefore barely converted. We here tested heterologous enzymes in Escherichia coli to overcome these limitations and to improve the production of adipate via a reverse β-oxidation pathway. We tested in vitro selected enzymes for the efficient reduction of the enoyl-CoA and in the final reaction for the thioester cleavage. The genes encoding the enzymes which showed in vitro the highest activity were then used to construct an expression plasmid for a synthetic adipate pathway. Expression of paaJ, paaH, paaF, dcaA, and tesB in E. coli BL21(DE3) resulted in the production of up to 36 mg/L of adipate after 30 h of cultivation. Beside the activities of the pathway enzymes, the availability of metabolic precursors may limit the synthesis of adipate, providing another key target for further strain engineering towards high-yield production of adipate with E. coli.

  相似文献   

10.
A series of chemical bifunctional cross-linking reagents, the succinimidyl maleimides, has been synthesized. Using hemoglobin as a model protein, it has been shown that these molecules react rapidly with sulfhydryl groups and more slowly with amino groups. The result is a high degree of specific cross-linking between the intramolecular subunits.  相似文献   

11.
Isolation and characterization of wheat ω-gliadin genes   总被引:1,自引:0,他引:1  
The DNA sequences of two full-length wheat ω-gliadin prolamin genes (ωF20b and ωG3) containing significant 5′ and 3′ flanking DNA sequences are reported. The ωF20b DNA sequence contains an open reading frame encoding a 30,460-Dalton protein, whereas the ωG3 sequence would encode a putative 39,210-Dalton protein except for a stop codon at amino-acid residue position 165. These two ω-gliadin genes are closely related and are of the ARQ-/ARE-variant type as categorized by the derived N-terminal amino-acid sequences and amino-acid compositions. The ω-gliadins were believed be related to the ω-secalins of rye and the C-hordeins of barley, and analyses of these complete ω-gliadin sequences confirm this close relationship. Although the ω-type sequences from all three species are closely related, in this analysis the rye and barley ω-type sequences are the most similar in a pairwise comparison. A comparison of ω-gliadin flanking sequences with respect to that of their orthologs and with respect to wheat gliadin genes suggests the conservation of flanking DNA necessary for gene function. Sequence data for members of all major wheat prolamin families are now available. Received: 24 August 2000 / Accepted: 15 December 2000  相似文献   

12.
Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190–220 g) were randomly divided into eight groups (n?=?6 rats in each group): 1 day hypoxia (H1); 7  days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.  相似文献   

13.
Mitochondrial fatty acids β-oxidation disorder (FAOD) has become popular with development of tandem mass spectrometry (MS/MS) and enzymatic evaluation techniques. FAOD occasionally causes acute encephalopathy or even sudden death in children. On the other hand, hyperpyrexia may also trigger severe seizures or encephalopathy, which might be caused by the defects of fatty acid β-oxidation (FAO). We investigated the effect of heat stress on FAO to determine the relationship between serious febrile episodes and defect in β-oxidation of fatty acid in children. Fibroblasts from healthy control and children with various FAODs, were cultured in the medium loaded with unlabelled palmitic acid for 96 h at 37 °C or 41 °C. Acylcarnitine (AC) profiles in the medium were determined by MS/MS, and specific ratios of ACs were calculated. Under heat stress (at 41 °C), long-chain ACs (C12, C14, or C16) were increased, while medium-chain ACs (C6, C8, or C10) were decreased in cells with carnitine palmitoyl transferase II deficiency, very-long-chain acyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency, whereas AC species from short-chain (C4) to long-chain (C16) were barely affected in medium-chain acyl-CoA dehydrogenase and control. While long-chain ACs (C12–C16) were significantly elevated, short to medium-chain ACs (C4–C10) were reduced in multiple acyl-CoA dehydrogenase deficiency. These data suggest that patients with long-chain FAODs may be more susceptible to heat stress compared to medium-chain FAOD or healthy control and that serious febrile episodes may deteriorate long-chain FAO in patients with long-chain FAODs.  相似文献   

14.
ω-Transaminase (ω-TA) is an industrially important enzyme for production of chiral amines. About 20 (S)-specific ω-TAs known to date show remarkably similar substrate selectivity characterized by stringent steric constraint precluding entry of a substituent larger than an ethyl group in the small binding pocket (S) and dual recognition of an aromatic substituent as well as a carboxylate group in the large pocket (L). The strictly defined substrate selectivity of the available ω-TAs remains a limiting factor in the production of structurally diverse chiral amines. In this work, we cloned, purified, and characterized three new ω-TAs from Ochrobactrum anthropi, Acinetobacter baumannii, and Acetobacter pasteurianus that were identified by a BLASTP search using the previously studied ω-TA from Paracoccus denitrificans. All the new ω-TAs exhibited similar substrate specificity, which led us to explore whether the molecular determinants for the substrate specificity are conserved among the ω-TAs. To this end, key active site residues were identified by docking simulation using the X-ray structure of the ω-TA from Pseudomonas putida. We found that the dual recognition in the L pocket is ascribed to Tyr23, Phe88*, and Tyr152 for hydrophobic interaction and Arg414 for recognition of a carboxylate group. In addition, the docking simulation indicates that Trp60 and Ile262 form the S pocket where the substituent size up to an ethyl group turns out to be sterically allowed. The six key residues were found to be essentially conserved among nine ω-TA sequences, underlying the molecular basis for the high similarity in the substrate selectivity.  相似文献   

15.
The effect of saturated fatty acids from 6∶0 to 16∶0 and oleic acid onLactobacillus leichmanii ATCC 4797 growing in non-skim-milk media was determined. The inhibition by lauric acid was higher than that obtained with any other fatty acid. A mutant (MC12) resistant to the fatty acid inhibition with high β-oxidation activity was also studied. A positive correlation between the ability ofL. leichmanii ATCC 4797 and its derivative MC12 to degrade fatty acids and their resistance to the fatty acid inhibition is shown in this report.  相似文献   

16.
17.
Peroxisomal fatty acid oxidation enzymes are summarized in comparison to their mitochondrial counterparts. The peroxisomal enzymes involved in the β-oxidation spiral are schematically classified into two groups. The first group consists of hitherto purified and characterized classical enzymes: palmitoyl-CoA oxidase, the L-bifunctional protein, and 3-ketoacyl-CoA. These enzymes are inducible and act on the straight chain substrates. The second group consists of recently identified enzymes, branched-chain oxidase, the d-bifunctional protein, and sterolcarrier protein x, which catalyze four reactions of β-oxidation cycle. These are noninducible and act on branched-chain substrates.  相似文献   

18.
We have reported that peroxisomal β-oxidation has an anabolic function, supplying acetyl-CoA for biosynthesis of bile acids and phospholipids. Here we deal with its role in the biosynthesis of the subclasses of ethanolamine- and choline-containing phosphoglycerides (EPG, CPG, respectively). Rats were fed for 2 weeks on chow containing 0.25% clofibrate, which inhibits cholesterol and bile acid biosyntheses, but stimulates peroxisomal β-oxidation. [1-14C]Lignoceric acid, which is exclusively degraded by peroxisomal β-oxidation to acetyl-CoA, was intravenously injected, and 3 h later the rats were killed. The EPG-rich and CPG-rich fractions were prepared from the liver. When they were treated with phospholipase A2, the radioactivity was predominantly recovered in the 1-radyl group. The radioactivity in EPG was easily dissociated with HCl vapor, and the lipid containing radioactivity was found to be a fatty aldehyde mixture consisting of steary aldehyde (approx. 58%) palmityl aldehyde (approx. 40%) and oleyl aldehyde (approx. 2%). Thus, in the case of EPG, acetyl-CoA from peroxisomal β-oxidation is incorporated mainly into the 1-alkenyl group of ethanolamine plasmalogen. The radioactivity in CPG, however, was found in fatty alcohol (formed from fatty acid), but not in alkylglycerol after reduction of the fraction with Vitride. Thus, in the case of CPG, acetyl-CoA from peroxisomal β-oxidation is exclusively incorporated into the 1-acyl group of diacyl glycerophosphocholine, but not into the 1-alkyl group. The above results were supported by the results of phospholipase C treatment. The above data indicate that peroxisomal β-oxidation plays a role in supplying acetyl-CoA for 1-alkenyl group of plasmalogen-type phospholipid, but this channel may open only to synthesis of EPG, and almost not to CPG.  相似文献   

19.
20.
The regiospecific or preferential ω-hydroxylation of hydrocarbon chains is thermodynamically disfavored because the ease of C–H bond hydroxylation depends on the bond strength, and the primary C–H bond of a terminal methyl group is stronger than the secondary or tertiary C–H bond adjacent to it. The hydroxylation reaction will therefore occur primarily at the adjacent secondary or tertiary C–H bond unless the protein structure specifically enforces primary C–H bond oxidation. Here we review the classes of enzymes that catalyze ω-hydroxylation and our current understanding of the structural features that promote the ω-hydroxylation of unbranched and methyl-branched hydrocarbon chains. The evidence indicates that steric constraints are used to favor reaction at the ω-site rather than at the more reactive (ω−1)-site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号