首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Five new α-aminophosphonates are synthesized and characterized by EA, FT-IR, 1H NMR, 13C NMR, 31P NMR, ESI-MS and X-ray crystallography. The X-ray analyses reveal that the crystal structures of 1–5 are monoclinic or triclinic system with the space group P 21/c, P  1, P  1, P2(1)/c and P  1, respectively. All P atoms of 1–5 have tetrahedral geometries involving two O-ethyl groups, one Cα atom, and a double bond O atom. The binding interaction of five new α-aminophosphonate N-derivatives (1–5) with calf thymus(CT)-DNA have been investigated by UV–visible and fluorescence emission spectrometry. The apparent binding constant (Kapp) values follows the order: 1 (3.38 × 105 M−1) > 2 (3.04 × 105 M−1) > 4 (2.52 × 105 M−1) > 5 (2.32 × 105 M−1) > 3 (2.10 × 105 M−1), suggesting moderate intercalative binding mode between the compounds and DNA. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the compounds 1–5 showed that the quenching mechanism might be a static quenching procedure. For the compounds 1–5, the number of binding sites were about one for BSA and the binding constants follow the order: 1 (2.72 × 104 M−1) > 2 (2.27 × 104 M−1) > 4 (2.08 × 104 M−1) > 5 (1.79 × 104 M−1) > 3 (1.17 × 104 M−1). Moreover, the DNA cleavage abilities of 1 exhibit remarkable changes and the in vitro cytotoxicity of 1 on tumor cells lines (MCF-7, HepG2 and HT29) have been examined by MTT and shown antitumor effect on the tested cells.  相似文献   

2.
The inimical effects of the ichthyotoxic harmful algal bloom (HAB)-forming raphidophytes Heterosigma akashiwo, Chattonella marina, and Chattonella antiqua on the early-life stages of the Japanese pearl oyster Pinctada fucata martensii were studied. Fertilized eggs and developing embryos were not affected following exposure to the harmful raphidophytes; however, all three algal species severely affected trochophores and D-larvae, early-stage D-larvae, and late-stage pre-settling larvae. Exposure to C. marina (5 × 102 cells ml−1), C. antiqua (103 cells ml−1), and H. akashiwo (5 × 103 cells ml−1) resulted in decreased success of metamorphosis to the trochophore stage. A complete inhibition of trochophore metamorphosis was observed following exposure to C. antiqua at 5 × 103 cells ml−1 and C. marina at 8 × 103 cells ml−1. In all experiments, more than 80% of newly formed trochophores were anomalous, and in the case of exposure to H. akashiwo at 105 cells ml−1 more than 70% of D-larvae were anomalous. The activity rates of D-larvae (1-day-old) were significantly reduced following exposure to C. antiqua (8 × 103 cells ml−1, 24 h), C. marina (8 × 103 cells ml−1, 24 h), and H. akashiwo (104 cells ml−1, 24 h). The activity rates of pre-settling larvae (21-day-old) were also significantly reduced following exposure to C. antiqua (103 cells ml−1, 24 h), C. marina (8 × 103 cells ml−1, 24 h), and H. akashiwo (5 × 104 cells ml−1, 24 h). Significant mortalities of both larval stages were induced by all three raphidophytes, with higher mortality rates registered for pre-settling larvae than D-larvae, especially following exposure to C. marina (5 × 102–8 × 103 cells ml−1, 48–86 h) and C. antiqua (103–8 × 103 cells ml−1, 72–86 h). Contact between raphidophyte cells and newly metamorphosed trochophores and D-larvae, 1-day-old D-larvae, and 21-day-old larvae resulted in microscopic changes in the raphidophytes, and then, in the motile early-life stages of pearl oysters. Upon contact and physical disturbance of their cells by larval cilia, H. akashiwo, C. marina and C. antiqua became immotile and shed their glycocalyx. The trochophores and larvae were observed trapped in a conglomerate of glycocalyx and mucus, most probably a mixture of larval mucous and raphidophyte tricosyts and mucocytes. All motile stages of pearl oyster larvae showed a typical escape behavior translating into increased swimming in an effort to release themselves from the sticky mucous traps. The larvae subsequently became exhausted, entrapped in more heavy mucous, lost their larval cilia, sank, become immotile, and died. Although other toxic mediators could have been involved, the results of the present study indicate that all three raphidophytes were harmful only for motile stages of pearl oysters, and that the physical disturbance of their cells upon contact with the ciliary structures of pearl oyster larvae initiated the harmful mechanism. The present study is the first report of lethal effects of harmful Chattonella spp. towards larvae of a bivalve mollusc. Blooms of H. akashiwo, C. antiqua and C. marina occur in all major cultivation areas of P. fucata martensii during the developmental period of their larvae. Therefore, exposure of the motile early-life stages of Japanese pearl oysters could adversely affect their population recruitment. In addition, the present study shows that further research with early-life development of pearl oysters and other bivalves could contribute to improving the understanding of the controversial harmful mechanisms of raphidophytes in marine organisms.  相似文献   

3.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

4.
《Aquatic Botany》2009,90(4):397-403
Patch dynamics of the Mediterranean slow-growing seagrass Posidonia oceanica was studied in two shallow sites (3–10 m) of the Balearic Archipelago (Spain) through repeated censuses (1–2 year−1). In the sheltered site of Es Port Bay (Cabrera Island), initial patch density (October 2001) was low: 0.05 patches m−2, and the patch size (number of shoots) distribution was bimodal: most of the patches had less than 6 shoots or between 20 and 50 shoots. Mean patch recruitment in Es Port Bay (0.006 ± 0.002 patches m−2 year−1) exceeded mean patch loss (0.001 ± 0.001 patches m−2 year−1), yielding positive net patch recruitment (0.004 ± 0.003 patches m−2 year−1) and a slightly increased patch density 3 years later (July 2004, 0.06 patches m−2). In the exposed site of S’Estanyol, the initial patch density was higher (1.38 patches m−2, August 2003), and patch size frequency decreased exponentially with size. Patch recruitment (0.26 patches m−2 year−1) and loss (0.24 patches m−2 year−1) were high, yielding a slightly increased patch density in the area 1 year later (October 2004, 1.40 patches m−2). Most recruited patches consisted of rooting vegetative fragments of 1–2 shoots. Seedling recruitment was observed in Summer 2004 at both sites. Episodic, seedling recruitment comprised 30% and 25% of total patch recruitment in Es Port Bay and S’Estanyol, respectively. Patch survival increased with patch size and no direct removal was observed among patches of 5 shoots or more. Most patches grew along the study, shifting patch distribution towards larger sizes. Within the size range studied (1–150 shoots), absolute shoot recruitment (shoots year−1) increased linearly with patch size (R2 = 0.64, p < 4 × 10−5, N = 125), while specific shoot recruitment was constant (about 0.25 ± 0.05 year−1), although its variance was large for small patches. Given the slow growth rate and the high survival of patches with 5 or more shoots, even the low patch recruitment rates reported here could play a significant role in the colonisation process of P. oceanica.  相似文献   

5.
We have previously demonstrated in human subjects who under euglycemic clamp conditions GLP-1(9–36)amide infusions inhibit endogenous glucose production without substantial insulinotropic effects. An earlier report indicates that GLP-1(9–36)amide is cleaved to a nonapeptide, GLP-1(28–36)amide and a pentapeptide GLP-1(32–36)amide (LVKGR amide). Here we study the effects of the pentapeptide on whole body glucose disposal during hyperglycemic clamp studies. Five dogs underwent indwelling catheterizations. Following recovery, the dogs underwent a 180 min hyperglycemic clamp (basal glucose +98 mg/dl) in a cross-over design. Saline or pentapeptide (30 pmol kg−1 min−1) was infused during the last 120 min after commencement of the hyperglycemic clamp in a primed continuous manner. During the last 30 min of the pentapeptide infusion, glucose utilization (M) significantly increased to 21.4 ± 2.9 mg kg−1 min−1compared to M of 14.3 ± 1.1 mg kg−1 min−1 during the saline infusion (P = 0.026, paired t-test; P = 0.062, Mann–Whitney U test). During this interval, no significant differences in insulin (26.6 ± 3.2 vs. 23.7 ± 2.5 μU/ml, P = NS) or glucagon secretion (34.0 ± 2.1 vs. 31.7 ± 1.8 pg/ml, P = NS) were observed. These findings demonstrate that under hyperglycemic clamp studies the pentapeptide modulates glucose metabolism by a stimulation of whole-body glucose disposal. Further, the findings suggest that the metabolic benefits previously observed during GLP-1(9–36)amide infusions in humans might be due, at least in part, to the metabolic effects of the pentapeptide that is cleaved from the pro-peptide, GLP-1(9–36)amide in the circulation.  相似文献   

6.
Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone’s free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k = 2.98 × 1011 M−1 s−1), singlet oxygen (k = 2.75 × 107 M−1 s−1), and methyl radical (k = 3.00 × 107 M−1 s−1). Overall, edaravone’s scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity.  相似文献   

7.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

8.
Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.01 g L−1 to 3.16 g L−1, with a molecular weight range of 1.40×106–1.83×106 Da. When leech hyaluronidase was actively expressed after N-terminal engineering (1.62×106 U mL−1), the production of HA was substantially increased from 5.96 g L−1 to 19.38 g L−1. The level of hyaluronidase was rationally regulated with a ribosome-binding site engineering strategy, allowing the production of LMW-HAs with a molecular weight range of 2.20×103–1.42×106 Da. Our results confirm that this strategy for the controllable expression of hyaluronidase, together with the optimization of the HA synthetic pathway, effectively produces specific LMW-HAs, and could also be used to produce other LMW polysaccharides.  相似文献   

9.
To investigate tropical roles of the newly described Yihiella yeosuensis (ca. 8 μm in cell size), one of the smallest phototrophic dinoflagellates in marine ecosystems, its trophic mode and the types of prey species that Y. yeosuensis can feed upon were explored. Growth and ingestion rates of Y. yeosuensis on its optimal prey, Pyramimonas sp. (Prasinophyceae), as a function of prey concentration were measured. Additionally, growth and ingestion rates of Y. yeosuensis on the other edible prey, Teleaulax sp. (Cryptophyceae), were also determined for a single prey concentration at which both these rates of Y. yeosuensis on Pyramimonas sp. were saturated. Among bacteria and diverse algal prey tested, Y. yeosuensis fed only on small Pyramimonas sp. and Teleaulax sp. (both cell sizes = 5.6 μm). With increasing mean prey concentrations, both specific growth and ingestion rates of Y. yeosuensis increased rapidly before saturating at a mean Pyramimonas concentration of 109 ng C mL−1 (2725 cells mL−1). The maximum growth rate (mixotrophic growth) of Y. yeosuensis fed with Pyramimonas sp. at 20 °C under a 14:10-h light-dark cycle of 20 μE m−2 s−1 was 1.32 d−1, whereas the growth rate of Y. yeosuensis without added prey was 0.026 d−1. The maximum ingestion rate of Y. yeosuensis fed with Pyramimonas sp. was 0.37 ng C predator−1 d−1 (9.3 cells predator−1 d−1). At a Teleaulax concentration of 1130 ng C mL−1 (66,240 cells mL−1), growth and ingestion rates of Y. yeosuensis fed with Teleaulax sp. were 1.285 d−1 and 0.38 ng C predator−1 d−1 (22.4 cells predator−1 d−1), respectively. Thus, Y. yeosuensis rarely grows without mixotrophy, and mixotrophy supports high growth rates in Y. yeosuensis. Y. yeosuensis has the highest maximum mixotrophic growth rate with the exception of Ansanella graniferaamong engulfment feeding mixotrophic dinoflagellates. However, the high swimming speed of Y. yeosuensis (1572 μm s−1), almost the highest among phototrophic dinoflagellates, may prevent autotrophic growth. This evidence suggests that Y. yeosuensis may be an effective mixotrophic dinoflagellate predator on Pyramimonas and Teleaulax, and occurs abundantly during or after blooms of these two prey species.  相似文献   

10.
《Aquatic Botany》2005,83(3):161-174
The photosynthetic and repiratory metabolism of Zostera marina and maerl communities was compared, in the same area of the Bay of Brest in March–April, using benthic chambers. PE curves for both oxygen and carbon were established for bottom irradiances between 0 and 525 μmol m−2 s−1. An exponential function was fitted to calculate daily production. Community metabolic quotients did not differ for maerl and seagrass beds. Community photosynthetic quotients were significantly higher (1.19) whereas community respiratory quotients were lower (0.70) than 1. Maerl and seagrass bed PE curves mainly differed by the minimum saturating irradiance (Ek). Net community production was estimated to 26.8 mmol C m−2 d−1 for Z. marina meadows and 8.6 mmol C m−2 d−1 for maerl beds. The two communities can, therefore, be considered as autotrophic during the March–April period. Community respiration did not differ between Z. marina meadows and maerl beds, with an average value of 53.8 mmol C m−2 d−1 during a day. In similar environmental conditions, the production of maerl beds corresponds to approximately one third that of seagrass meadows. The maerl communities, therefore, form productive ecosystems, relevant to temperate coastal ecosystems functioning.  相似文献   

11.
《Biological Control》2010,55(3):172-180
The efficacy of Aureobasidium pullulans PL5 against different postharvest pathogens of fruits (Monilinia laxa on plums and peaches, Botrytis cinerea and Penicillium expansum on apples) were evaluated under storage conditions when applied at 108 cells ml−1 and their interactions were studied in vitro and in vivo to discover the possible modes of action. Under 1.2 °C and 95% relative humidity (RH) for 28 days, the efficacy of PL5 against M. laxa on plums was 45%, reducing disease incidence from 78% to 43%. Under 1 °C and 95% RH for 21 days, the efficacy against M. laxa on peaches was 63%, reducing disease incidence from 79% to 29%. Under 4 °C and 95% RH for 45 days, the efficacy against B. cinerea and P. expansum on apples was 56% and 46%, respectively. In Lilly–Barnett minimal salt medium with the fungal cell walls of pathogens as sole carbon source, PL5 produced β-1,3-glucanase, exo-chitinase and endo-chitinase. Nutrient concentrations had significant effect on pathogen growth reduction by PL5. No attachment was observed in antagonist–pathogen interactions in vitro or in vivo. PL5 completely inhibited pathogen spore germination in PDB at 108 cells ml−1, whereas at 106 cells ml−1 the efficacy was significantly decreased. However, inactivated cells and culture filtrate of PL5 had no effect on pathogen spore germination and germ tube elongation. Our results showed that A. pullulans PL5 could be introduced in commercial formulations to control postharvest pathogens on fruits and its activity was based on secretion of lytic enzymes and competition for nutrients.  相似文献   

12.
The present study was undertaken to gain insight into the associations of mercury(II) with dicysteinyl tripeptides in buffered media at pH 7.4. We investigated the effects of increasing the distance between cysteinyl residues on mercury(II) associations and complex formations. The peptide–mercury(II) formation constants and their associated thermodynamic parameters in 3-(N-morpholino)propanesulfonic acid (MOPS) buffered solutions were evaluated by isothermal titration calorimetry. Complexes formed in different relative ratios of mercury(II) to cysteinyl peptides in ammonium formate buffered solutions were characterized by LTQ Orbitrap mass spectrometry. The results from these studies show that n-alkyl dicysteinyl peptides (CP 14), and an aryl dicysteinyl peptide (CP 5) can serve as effective “double anchors” to accommodate the coordination sites of mercury(II) to form predominantly one-to-one Hg(peptide) complexes. The aryl dicysteinyl peptide (CP 5) also forms the two-to-two Hg2(peptide)2 complex. In the presence of excess peptide, Hg(peptide)2 complexes are also detected. Notably, increasing the distance between the ligating groups or “anchor points” in CP 15 does not significantly affect their affinity for mercury(II). However, the enthalpy change (ΔH) values (ΔH1  −91 kJ mol−1 and ΔH2  −66 kJ mol−1) for complex formation between CP 4 and 5 with mercury(II) are about one and a half times larger than the related values for CP 1, 2 and 3H1  −66 kJ mol−1 and ΔH2  46 kJ mol−1). The corresponding entropy change (ΔS) values (ΔS1  −129 J K−1 mol−1 and ΔS2  −116 J K−1 mol−1) of the structurally larger dicysteinyl peptides CP 4 and 5 are less entropically favorable than for CP 1, 2 and 3S1  −48 J K−1 mol−1 and ΔS2  −44 J K−1 mol−1). Generally, these associations result in a decrease in entropy, indicating that these peptide–mercury complexes potentially form highly ordered structures. The results from this study show that dicysteinyl tripeptides are effective in binding mercury(II) and they are promising motifs for the design of multi-cysteinyl peptides for binding more than one mercury(II) ion per peptide.  相似文献   

13.
《Inorganica chimica acta》2006,359(5):1351-1356
Energy-transfer rate-constants from photo-excited [Ru(N–N)3]2+ (N–N = 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (4dmb), 5,5′-dimethyl-2,2′-bipyridine (5dmb)) to [Cr(O–O)3]3− (O–O2− = ox2− ((COO)2), mal2− (CH2(COO)2)) and [Cr(CN)6]3− in encounter complexes were evaluated in aqueous solutions containing alkali metal ion. The rate constant depends on the molecular size of the ruthenium(II) complex: 1.8 × 108 s−1 for [Ru(bpy)3]2+ (molecular radius, r = 5.8 Å), 1.4 × 108 s−1 for [Ru(5dmb)3]2+ (r = 6.1 Å) and 0.96 × 108 s−1 for [Ru(4dmb)3]2+ (r = 6.7 Å) in the system of [Ru(N–N)3]2+–[Cr(ox)3]3− in aqueous solution. However, the rate constant is much more sensitive to the chromate(III) complex than to ruthenium(II) complex; 1.8 × 108 s−1 and 0.43 × 108 s−1 for [Cr(ox)3]3− (r = 4.0 Å) and [Cr(mal)3]3− (r = 4.2 Å) in the [Ru(bpy)3]2+–[Cr(O–O)3]3− systems, respectively. We conclude that the congeniality between the donor’s and acceptor’s ligands in encounter complex plays an important role in energy transfer in aqueous solution.  相似文献   

14.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

15.
The research on the function and mechanism of selenium (Se) is of great significance for the development of Se-enriched agricultural products. In this paper, uptake, speciation distribution, the effects on the flue-cured tobacco growth and antioxidant system of Se at different levels (0–22.2 mg Se kg−1) were studied through a pot experiment, aiming to clarify flue-cured tobacco's response to Se stress and the relationship between Se speciation and antioxidant system. The results showed that the leaf area and number, the biomass and the chlorophyll content reached the maximum at 4.4 mg kg−1 of Se treatment. Selenium at low levels (≤4.4 mg kg−1) stimulated the growth of flue-cured tobacco by elevating the capability of antioxidant stress and reducing the malondialdehyde (MDA) content to 0.6–0.8 times of that of the control. However, high Se levels (≥11.1 mg kg−1) depressed the capability of antioxidant stress and raised the MDA content to 1.5-fold of that of the control, and meanwhile the biomass of the aboveground parts and underground parts declined notably. The Se content in different parts of flue-cured tobacco significantly increased with the growth of Se levels. The range of Se content in roots, leaves and stems at 2.2–22.2 mg kg−1 of Se treatment were 16.7–58.6 mg kg−1, 2.6–37.3 mg kg−1 and 2.2–10.3 mg kg−1, respectively. According to the detection of different Se speciation, only selenocysteine (SeCys) was detectable in leaves at 2.2 mg kg−1 Se treatment; SeCys, selenite [Se(IV)]and selenate [Se(VI)] were detected in flue-cured tobacco leaves at Se treatment (≥4.4 mg kg−1), which accounted for 4.6–10%, 9–18.7% and 71–86% respectively; SeCys, selenomethionine (SeMet) and Se(IV) were detected in roots, and organic selenium(66–84%) was the main Se species at Se  11.1 mg kg−1 treatment; four Se species [SeCys, SeMet, Se(IV) and Se(VI)] were detected in flue-cured tobacco roots, and the main Se species was inorganic Se (60%) at 22.2 mg kg−1 Se treatment. That was to say, the percentage of organic Se species (SeCys and SeMet in flue-cured tobacco leaves and root) declined, whereas the ratio of inorganic Se species [Se(IV) and Se(VI)] increased with the growth of Se levels. The correlation analysis showed that the superoxide dismutase (SOD) activity as well as the glutathione (GSH) and MDA contents were positively correlated with the Se(IV) and Se(VI) contents at P < 0.01 and excessive inorganic Se might destruct the reactive oxygen species (ROS) balance and enhance the MDA content, thus causing damage to the plant growth. In a word, the present study suggested that the ratio of inorganic Se [Se(IV) and Se(VI)] was closely related with the growth and the antioxidant capacity of flue-cured tobacco and the excessive application of Se led to the higher proportion of inorganic Se and poorer antioxidant capacity, which ultimately inhibited the growth of flue-cured tobacco.  相似文献   

16.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

17.
Four structurally unique guanidine alkaloids ecliptamines A–D (14) and one known analog (5) were isolated from the aerial parts of Eclipta prostrata (Asteraceae). Their structures were elucidated on the basis of spectroscopic analyses and chemical methods. The inhibitory activities of 1, 2 and 5 were assayed with respect to cyclooxygenase-1 (COX-1) and -2 (COX-2). Compound 5 showed moderate inhibitory activities against COX-1 and -2 with IC50 values of 3.0 × 10−3 M and 8.3 × 10−4 M, respectively, whereas aspirin as a positive control displayed the IC50 values of 4.2 × 10−4 M (against COX-1) and 7.1 × 10−4 M (against COX-2).  相似文献   

18.
Experiments were conducted to determine the optimum requirements of non-phytin phosphorus (NPP) in commercial broilers and White Leghorn layers. Five levels of NPP (2.5, 3.0, 3.5, 4.0 and 4.5 g kg−1 diet) were tested to assess the NPP requirement of commercial broilers (3–30 days of age) fed maize–soya diets containing 10 g Ca kg−1. Each level of NPP was fed to quadruplicate groups of ten chicks each. Inclusion of graded levels of NPP significantly (P < 0.01) influenced body weight gain, feed intake, tibia ash content, phosphorus content in serum, tibia ash and phosphorus retention. The predicted NPP requirements for body weight gain, P content in serum and tibia ash were 4.4, 4.48 and 4.1 g kg−1 diet, respectively. The NPP requirement for tibia ash was the highest (7.4 g kg−1 diet). Similarly, four levels of NPP (2.0, 2.5, 3.0 and 3.5 g kg−1 diet) were tested with maize–soya diets containing 35 g Ca kg−1 for White Leghorn layers (266–350 days of age). Each diet was tested on four groups of 12 hens in each. Egg production was not influenced by the variation in dietary NPP levels. The predicted NPP requirements for better egg weight and shell thickness were 2.6 and 2.4 g kg−1 diet, respectively, while for the serum inorganic P level the value was 3.42 g kg−1 diet. Therefore, it can be concluded that commercial broilers need about 4.4 g NPP kg−1 diet for better performance, whereas, White Leghorn layers need not more than 2.0 g NPP kg−1 diet for better egg production. However, layers require 2.6 g NPP kg−1 diet to produce eggs with better egg size and shell quality.  相似文献   

19.
Functional indicators are being increasingly used to assess waterway health but their responses to pressure in non-wadeable rivers have not been widely documented or applied in modern survey designs that provide unbiased estimates of extent. This study tests the response of river metabolism and loss in cotton strip tensile strength across a land use pressure gradient in non-wadeable rivers of northern New Zealand, and reports extent estimates for river metabolism and decomposition rates. Following adjustment for probability of selection, ecosystem respiration (ER) and gross primary production (GPP) for the target population of order 5–7 non-wadeable rivers averaged −7.3 and 4.8 g O2 m−2 d−1, respectively, with average P/R < 1 indicating dominance by heterotrophic processes. Ecosystem respiration was <−3.3 g O2 m−2 d−1 for 75% of non-wadeable river length with around 20% of length between −10 and −20 g O2 m−2 d−1. Cumulative distribution functions of cotton strength loss estimates indicated a more-or-less linear relationship with river km reflecting an even spread of decay rates (range in k 0.0007–0.2875 d−1) across non-wadeable rivers regionally. A non-linear relationship with land cover was detected for GPP which was typically <5 g O2 m−2 d−1 where natural vegetation cover was below 20% and greater than 80% of upstream catchment area. For cotton strength loss, the relationship with land cover was wedge-shaped such that sites with >60% natural cover had low decay rates (<0.02 d−1) with variability below this increasing as natural cover declined. Using published criteria for assessing waterway health based on ER and GPP, 232–298 km (20–29%) of non-wadeable river length was considered to have severely impaired ecosystem functioning, and 436–530 km (42–50%) had no evidence of impact on river metabolism.  相似文献   

20.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号