首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperthermophilic archaeon, Pyrococcus furiosus, grows optimally near 100 °C by fermenting sugars to acetate, carbon dioxide and molecular hydrogen as the major end products. The organism has recently been exploited to produce biofuels using a temperature-dependent metabolic switch using genes from microorganisms that grow near 70 °C. However, little is known about its metabolism at the lower temperatures. We show here that P. furiosus produces acetoin (3-hydroxybutanone) as a major product at temperatures below 80 °C. A novel type of acetolactate synthase (ALS), which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the als gene abolishes acetoin production. Accordingly, deletion of als in a strain of P. furiosus containing a novel pathway for ethanol production significantly improved the yield of ethanol. These results also demonstrate that P. furiosus is a potential platform for the biological production of acetoin at temperatures in the 70–80 °C range.  相似文献   

2.
Microbial production of higher alcohols from renewable feedstock has attracted intensive attention thanks to its potential as a source for next-generation gasoline substitutes. Here we report the discovery, characterization and engineering of an endogenous 1-butanol pathway in Saccharomyces cerevisiae. Upon introduction of a single gene deletion adh1Δ, S. cerevisiae was able to accumulate more than 120 mg/L 1-butanol from glucose in rich medium. Precursor feeding, 13C-isotope labeling and gene deletion experiments demonstrated that the endogenous 1-butanol production was dependent on catabolism of threonine in a manner similar to fusel alcohol production by the Ehrlich pathway. Specifically, the leucine biosynthesis pathway was engaged in the conversion of key 2-keto acid intermediates. Overexpression of the pathway enzymes and elimination of competing pathways achieved the highest reported 1-butanol titer in S. cerevisiae (242.8 mg/L).  相似文献   

3.
The potential advantages of biological production of chemicals or fuels from biomass at high temperatures include reduced enzyme loading for cellulose degradation, decreased chance of contamination, and lower product separation cost. In general, high temperature production of compounds that are not native to the thermophilic hosts is limited by enzyme stability and the lack of suitable expression systems. Further complications can arise when the pathway includes a volatile intermediate. Here we report the engineering of Geobacillus thermoglucosidasius to produce isobutanol at 50 °C. We prospected various enzymes in the isobutanol synthesis pathway and characterized their thermostabilities. We also constructed an expression system based on the lactate dehydrogenase promoter from Geobacillus thermodenitrificans. With the best enzyme combination and the expression system, 3.3 g/l of isobutanol was produced from glucose and 0.6 g/l of isobutanol from cellobiose in G. thermoglucosidasius within 48 h at 50 °C. This is the first demonstration of isobutanol production in recombinant bacteria at an elevated temperature.  相似文献   

4.
The thermophilic anaerobe Thermoanaerobacterium saccharolyticum JW/SL-YS485 was investigated as a host for n-butanol production. A systematic approach was taken to demonstrate functionality of heterologous components of the clostridial n-butanol pathway via gene expression and enzymatic activity assays in this organism. Subsequently, integration of the entire pathway in the wild-type strain resulted in n-butanol production of 0.85 g/L from 10 g/L xylose, corresponding to 21% of the theoretical maximum yield. We were unable to integrate the n-butanol pathway in strains lacking the ability to produce acetate, despite the theoretical overall redox neutrality of n-butanol formation. However, integration of the n-butanol pathway in lactate deficient strains resulted in n-butanol production of 1.05 g/L from 10 g/L xylose, corresponding to 26% of the theoretical maximum.  相似文献   

5.
The heat treatment of recombinant mesophiles having heterologous thermotolerant enzymes results in the one-step preparation of highly selective biocatalytic modules. The assembly of these modules enables us to readily construct an artificial metabolic pathway in vitro. In this work, we constructed a non-natural, cofactor-balanced, and oxygen-insensitive pathway for n-butanol production using 16 thermotolerant enzymes. The whole pathway was divided into 7 parts, in each of which NAD(H)-dependent enzymes were assigned to be the last step, and the fluxes through each part were spectrophotometrically determined. This real-time monitoring technique enabled the experimental optimization of enzyme level to achieve a desired production rate. Through the optimized pathway, n-butanol could be produced from glucose with a molar yield of 82% at a rate of 8.2 µmol l−1 min−1. Our approach would be widely applicable to the rational optimization of artificial metabolic pathways as well as to the in vitro production of value-added biomolecules.  相似文献   

6.
Chrysoperla genanigra Freitas is a common green lacewing associated with melon pests in the Northeastern Brazil. All life stages of this recently described species were studied under a range of constant temperature conditions (17, 21, 25, 29, 33, 35 and 37 °C), a photoperiod of 12 h:12 h (L:D) and 70 ± 10% relative humidity. Adults of C. genanigra were fed on a diet consisting of a 1:1 (v/v) mixture of brewer’s yeast and honey, while larvae were provided with eggs of Sitotroga cerealella (Olivier) ad libitum. The duration of preimaginal development of the species was inversely proportional to temperature and ranged from approximately 63 days at 17 °C to 15 days at 35 °C. The percentage of adult emergence varied from 6.7% at 17 °C to 76.7% at 25 °C, although no larvae were able to complete development at 37 °C. The lower thermal threshold for total preimaginal development was approximately 10.8 °C and the thermal requirement was 336.7 degree-days. Egg production, along with the longevity of both males and females, were significantly affected by temperature. It is concluded that the best temperature for rearing C. genanigra is 25 °C, with the lowest preimaginal mortality and the highest egg production (992.7 eggs/female).  相似文献   

7.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

8.
《Journal of plant physiology》2014,171(3-4):292-300
A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph–mass spectrometry (GC–MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures.  相似文献   

9.
The cellulolytic Clostridium cellulovorans has been engineered to produce n-butanol from low-value lignocellulosic biomass by consolidated bioprocessing (CBP). The objective of this study was to establish a robust cellulosic biobutanol production process using a metabolically engineered C. cellulovorans. First, various methods for the pretreatment of four different corn-based residues, including corn cob, corn husk, corn fiber, and corn bran, were investigated. The results showed that better cell growth and a higher concentration of n-butanol were produced from corn cob that was pretreated with sodium hydroxide. Second, the effects of different carbon sources (glucose, cellulose and corn cob), basal media and culture pH values on butanol production were evaluated in the fermentations performed in 2-L bioreactors to identify the optimal CBP conditions. Finally, the engineered C. cellulovorans produced butanol with final concentration >3 g/L, yield >0.14 g/g, and selectivity >3 g/g from pretreated corn cob at pH 6.5 in CBP. This study showed that the fermentation process engineering of C. cellulovorans enabled a high butanol production directly from agricultural residues.  相似文献   

10.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

11.
The pentanol isomers 2-methyl-1-butanol and 3-methyl-1-butanol represent commercially interesting alcohols due to their potential application as biofuels. For a sustainable microbial production of these compounds, Corynebacterium glutamicum was engineered for producing 2-methyl-1-butanol and 3-methyl-1-butanol via the Ehrlich pathway from 2-keto-3-methylvalerate and 2-ketoisocaproate, respectively. In addition to an already available 2-ketoisocaproate producer, a 2-keto-3-methylvalerate accumulating C. glutamicum strain was also constructed. For this purpose, we reduced the activity of the branched-chain amino acid transaminase in an available C. glutamicum l-isoleucine producer (K2P55) via a start codon exchange in the ilvE gene enabling accumulation of up to 3.67 g/l 2-keto-3-methylvalerate. Subsequently, nine strains expressing different gene combinations for three 2-keto acid decarboxylases and three alcohol dehydrogenases were constructed and characterized. The best strains accumulated 0.37 g/l 2-methyl-1-butanol and 2.76 g/l 3-methyl-1-butanol in defined medium within 48 h under oxygen deprivation conditions, making these strains ideal candidates for additional strain and process optimization.  相似文献   

12.
In order to study the different physiological bases of cold tolerance in the apical flower buds (AFB) and the lateral flower buds (LFB) of the Hanfu apple (Malus domestica Borkh), we used 4-year-old grafted Hanfu plants as material and evaluated the physiological characteristics of mitochondria in the flower buds, such as electron transport chains (cytochrome pathway and alternative pathway), H2O2 content, mitochondrial membrane permeability transition (mPT), and MDA content. AFBs and LFBs showed different changes in total respiratory rate (Vt) during low-temperature stress, except that both reached the lowest Vts at ?30 °C. The AFB Vt increased to a peak at ?25 °C and decreased sharply to its minimal value at ?30 °C, and then remained relatively low. In contrast, the LFB Vt decreased to its minimal value at ?30 °C and increased sharply to a peak at ?35 °C and then decreased again. In both AFBs and LFBs, the cytochrome pathway was still the main electron transport chain throughout the whole process, and the contributions of the cytochrome pathway (ρVcyt/Vt) and of the alternative pathway (ρValt/Vt) showed similar tendencies to those of Vt as temperature changed. Changes in the AFB mPT were different from those of AFB Vt. LFB mPT zigzagged from peaks at ?25 °C and 35 °C. The H2O2 content of the LFBs increased from ?10 °C to ?30 °C, then decreased slightly from ?30 °C to ?35 °C, and then increased again. H2O2 content in AFBs went up steadily throughout the whole process. During the early stage of low-temperature treatment, before temperatures reached ?35 °C, LFB MDA content remained relatively low and later increased. MDA content in AFBs began to increase from the beginning of treatment. It can be concluded that the higher cold tolerance of LFBs relative to AFBs could be closely related to their higher Vt and ρValt/Vt, which may aid adaptations to stress by supplying energy and metabolic substrates under low-temperature stress conditions.  相似文献   

13.
《Process Biochemistry》2010,45(12):1923-1927
1,3-Diacylglycerol (1,3-DAG) oil has beneficial effects on suppressing the accumulation of body fat and preventing the increase of body weight. So, more and more attention has been paid to enzyme-mediated 1,3-DAG production in recent years due to its mild reaction condition and safe products. In this work, t-butanol was adopted as the reaction medium for lipase-catalyzed esterification for 1,3-DAG preparation. In t-butanol system, the harmful effects on lipase caused by glycerol could be eliminated completely, so the high enzymatic activity was maintained and the stability of the lipase could be improved significantly. Under the optimum conditions (60 °C, 1.00 g Novozym 435, 2.5:1 molar ratio of oleic acid to glycerol (10.0 g oleic acid and 1.3 g glycerol) and 6.0 g t-butanol), 1,3-DAG concentration of 40% was achieved and Novozym 435 can be used 100 times. A simplified model based on Ping-Pong Bi-Bi with substrate competitive inhibition by glycerol was found to fit the initial rate data and the kinetics parameters were evaluated by nonlinear regression analysis.  相似文献   

14.
《Process Biochemistry》2014,49(1):54-60
The application of high hydrostatic pressure (HHP) impairs electrostatic and hydrophobic intermolecular interactions, promoting the dissociation of recombinant inclusion bodies (IBs) under mild conditions that favor subsequent protein refolding. We demonstrated that IBs of a mutant version of green fluorescent protein (eGFP F64L/S65T), produced at 37 °C, present native-like secondary and tertiary structures that are progressively lost with an increase in bacterial cultivation temperature. The IBs produced at 37 °C are more efficiently dissociated at 2.4 kbar than those produced at 47 °C, yielding 25 times more soluble, functional eGFP after the lower pressure (0.69 kbar) refolding step. The association of a negative temperature (−9 °C) with HHP enhances the efficiency of solubilization of IBs and of eGFP refolding. The rate of refolding of eGFP as temperature increases from 10 °C to 50 °C is proportional to the temperature, and a higher yield was obtained at 20 °C. High level refolding yield (92%) was obtained by adjusting the temperatures of expression of IBs (37 °C), of their dissociation at HHP (−9 °C) and of eGFP refolding (20 °C). Our data highlight new prospects for the refolding of proteins, a process of fundamental interest in modern biotechnology.  相似文献   

15.
Three phase partitioning (TPP) is most renowned technique used for extraction and purification of natural products. In previous studies of TPP, t-butanol is mainly used as an organic phase. This is the first report that explores ability of dimethyl carbonate (DMC) in the field of TPP as an alternate solvent for t-butanol. In the present study TPP process with t-butanol and DMC as organic phase along with different salts was applied to waste bitter gourd powder to obtained peroxidase enzyme. DMC was found to be compatible with most of salts such as ammonium sulphate and sodium citrate and explored as more efficient solvent than t-butanol. This TPP system provides 4.84 fold purity of peroxidase enzyme at optimum source concentration of 0.15 g/mL, with a system comprising DMC as organic phase, sodium citrate (20%) as salt, agitation speed 120 rpm, pH 7, temperature 30 °C and extraction time of 3 h. Present study has aimed for extraction and separation of peroxidase from bitter gourd waste with TPP technique and ensures the scope of carbonated solvents in extraction and purification of proteins.  相似文献   

16.
《Cryobiology》2012,64(3):220-228
Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53 °C ± 0.53 °C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34 °C ± 0.25 °C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.  相似文献   

17.
Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27 °C and two ramp-programmed at 27±3 °C and 27±5 °C on a cycle of 12 h (+) and 12 h (−). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1 °C, with a mean of 27.0 °C; the other outside the room where temperatures varied from 20.2 to 35.3 °C, with a mean of 26.1 °C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis.  相似文献   

18.
《Process Biochemistry》2010,45(4):487-492
A thermotolerant ethanol-fermenting yeast, Saccharomyces cerevisiae KNU5377, isolated from a sludge of a local industrial complex stream in Korea, was evaluated for its capability for lignocellulosic ethanol production from waste newsprint in high temperature. In this fermentation, most of dry-defibrated waste newspaper was first saccharified at 50 °C for 108 h using a commercial cellulase and, then with the last addition of dry-defibrated newsprints to the pre-saccharified broth, simultaneous saccharification and fermentation (SSF) of 1.0 L of reaction mixture was carried out at 40 °C, slowly being dropped from 50 °C, for further 72 h in a 5 L fermentor by inoculating the overnight culture of KNU5377. The maximum production of 8.4% (v/v) ethanol was obtained when 250 g (w/v)/L of dry-defibrated waste newspaper was used for ethanol production by SSF. These results suggest that S. cerevisiae KNU5377 is very useful for cellulose ethanol production by the SSF system.  相似文献   

19.
《Process Biochemistry》2007,42(7):1101-1106
The thermophilic fungus Thermoascus aurantiacus 179-5 and the mesophilic Aureobasidium pullulans ER-16 were cultivated in corn-cob by solid state fermentation for β-glucosidase production. After fermentation both enzymes were purified. The β-glucosidases produced by the strains A. pullulans and T. aurantiacus were most active at pH 4.0–4.5 and 4.5, with apparent optimum temperatures at 80 and 75 °C, respectively. Surprisingly, the enzyme produced by the mesophilic A. pullulans was stable over a wider range of pH (4.5–9.5 against 4.5–6.5) and more thermostable (98% after 1 h at 75 °C against 98% after 1 h at 70 °C) than the enzyme from the thermophilic T. aurantiacus. The t(1/2) at 80 °C were 90 and 30 min for A. pullulans and T. aurantiacus, respectively. β-Glucosidase thermoinactivation followed first-order kinetics and the energies of denaturation were 414 and 537 kJ mol−1 for T. aurantiacus and A. pullulans, respectively. The result showed that β-glucosidase obtained from the mesophilic A. pullulans is more stable than that obtained from the thermophilic T. aurantiacus.  相似文献   

20.
Chrysoperla agilis Henry et al. is one of the five cryptic species of the carnea group found in Europe. Identification of these species is mainly based on the distinct mating signals produced by both females and males prior to copulation, although there are also morphological traits that can be used to distinguish among different cryptic species. Ecological and physiological cryptic species-specific differences may affect their potential as important biological agents in certain agroecosystems. To understand the effects of temperature on the life-history traits of C. agilis preimaginal development, adult longevity and reproduction were studied at seven temperatures. Temperature affected the development, survival and reproduction of C. agilis. Developmental time ranged from approximately 62 days at 15 °C to 15 days at 30 °C. Survival percentages ranged from 42% at 15 °C to 76% at 27 °C. One linear and five nonlinear models (Briere I, II, Logan 6, Lactin and Taylor) used to model preimaginal development were tested to describe the relationship between temperature and developmental rate. Logan 6 model fitted the data of egg to adult development best according to the criteria adopted for the model evaluation. The predicted lower developmental threshold temperatures were 11.4 °C and 11.8 °C (linear model), whereas the predicted upper threshold temperatures (Logan 6 model) were 36.6 and 36.9 °C for females and males, respectively. Adult life span, preoviposition period and lifetime cumulative oviposition were significantly affected by temperature. The effect of rearing temperature on the demographic parameters is well summarized with the estimated values of the intrinsic rate of increase (rm) which ranged from 0.0269 at 15 °C to 0.0890 at 32 °C and the highest value recorded at 27 °C (0.1530). These results could be useful in mass rearing C. agilis and predicting its population dynamics in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号