共查询到20条相似文献,搜索用时 20 毫秒
1.
Angov E 《Biotechnology journal》2011,6(6):650-659
2.
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein. 相似文献
3.
大肠杆菌mRNA编码区长度、形成二级结构倾向与密码子偏好性的关系 总被引:1,自引:0,他引:1
从GenBank获得大肠杆菌K-12MG1655株的全基因组序列,计算了与基因密码子偏好性相关的多个参数(Nc、CAI、GC、GC3s),对其mRNA编码区长度、形成二级结构倾向与密码子偏好性之间的关系进行了统计学分析,发现虽然翻译效率(包括翻译速度和翻译精度)是制约大肠杆菌高表达基因的密码子偏好性的主要因素,同时,mRNA编码区长度及其形成二级结构的倾向也是形成这种偏好性的不可忽略的原因,而且对偏好性有一定程度的削弱。另外对mRNA编码区形成二级结构倾向的生物学意义进行了讨论分析。 相似文献
4.
Jian-Rong Yang 《动物学研究》2017,38(1)
Currently many facets of genetic information are illdefined.In particular,how protein folding is genetically regulated has been a long-standing issue for genetics and protein biology.And a generic mechanistic model with supports of genomic data is still lacking.Recent technological advances have enabled much needed genome-wide experiments.While putting the effect of codon optimality on debate,these studies have supplied mounting evidence suggesting a role of mRNA structure in the regulation of protein folding by modulating translational elongation rate.In conjunctions with previous theories,this mechanistic model of protein folding guided by mRNA structure shall expand our understandings of genetic information and offer new insights into various biomedical puzzles. 相似文献
5.
Cortazzo P Cerveñansky C Marín M Reiss C Ehrlich R Deana A 《Biochemical and biophysical research communications》2002,293(1):537-541
As an approach to investigate the molecular mechanism of in vivo protein folding and the role of translation kinetics on specific folding pathways, we made codon substitutions in the EgFABP1 (Echinococcus granulosus fatty acid binding protein1) gene that replaced five minor codons with their synonymous major ones. The altered region corresponds to a turn between two short alpha helices. One of the silent mutations of EgFABP1 markedly decreased the solubility of the protein when expressed in Escherichia coli. Expression of this protein also caused strong activation of a reporter gene designed to detect misfolded proteins, suggesting that the turn region seems to have special translation kinetic requirements that ensure proper folding of the protein. Our results highlight the importance of codon usage in the in vivo protein folding. 相似文献
6.
Codon usage bias (CUB) is an omnipresent phenomenon, which occurs in nearly all organisms. Previous studies of codon bias in
Plasmodium species were based on a limited dataset. This study uses whole genome datasets for comparative genome analysis of six
Plasmodium species using CUB and other related methods for the first time. Codon usage bias, compositional variation in translated
amino acid frequency, effective number of codons and optimal codons are analyzed for P.falciparum, P.vivax, P.knowlesi, P.berghei,
P.chabaudii and P.yoelli. A plot of effective number of codons versus GC3 shows their differential codon usage pattern arises due to
a combination of mutational and translational selection pressure. The increased relative usage of adenine and thymine ending
optimal codons in highly expressed genes of P.falciparum is the result of higher composition biased pressure, and usage of guanine
and cytosine bases at third codon position can be explained by translational selection pressure acting on them. While higher usage
of adenine and thymine bases at third codon position in optimal codons of P.vivax highlights the role of translational selection
pressure apart from composition biased mutation pressure in shaping their codon usage pattern. The frequency of those amino
acids that are encoded by AT ending codons are significantly high in P.falciparum due to action of high composition biased
mutational pressure compared with other Plasmodium species. The CUB variation in the three rodent parasites, P.berghei, P.chabaudii
and P.yoelli is strikingly similar to that of P.falciparum. The simian and human malarial parasite, P.knowlesi shows a variation in
codon usage bias similar to P.vivax but on closer study there are differences confirmed by the method of Principal Component
Analysis (PCA).
Abbreviations
CDS - Coding sequences, GC1 - GC composition at first site of codon, GC2 - GC composition at second site of codon, GC3 - GC composition at third site of codon, Ala - Alanine, Arg - Arginine, Asn - Asparagine, Asp - Aspartic acid, Cys - Cysteine, Gln - Glutamine Glu - Glutamic acid Gly - Glycine His - Histidine Ile - Isoleucine Leu - Leucine Lys - Lysine Met - Methionine Phe - Phenylalanine Pro - Proline Ser - Serine Thr - Threonine Trp - Tryptophan Tyr - Tyrosine Val - Valine. 相似文献7.
Edward Daniel Goodluck U. Onwukwe Rik K. Wierenga Susan E. Quaggin Seppo J. Vainio Mirja Krause 《BMC bioinformatics》2015,16(1)
Background
Codon usage plays a crucial role when recombinant proteins are expressed in different organisms. This is especially the case if the codon usage frequency of the organism of origin and the target host organism differ significantly, for example when a human gene is expressed in E. coli. Therefore, to enable or enhance efficient gene expression it is of great importance to identify rare codons in any given DNA sequence and subsequently mutate these to codons which are more frequently used in the expression host.Results
We describe an open-source web-based application, ATGme, which can in a first step identify rare and highly rare codons from most organisms, and secondly gives the user the possibility to optimize the sequence.Conclusions
This application provides a simple user-friendly interface utilizing three optimization strategies: 1. one-click optimization, 2. bulk optimization (by codon-type), 3. individualized custom (codon-by-codon) optimization. ATGme is an open-source application which is freely available at: http://atgme.org 相似文献8.
Synonymous codon usage and cellular tRNA abundance are thought to be co-evolved in optimizing translational efficiencies in highly expressed genes. Here in this communication by taking the advantage of publicly available gene expression data of rice and Arabidopsis we demonstrated that tRNA gene copy number is not the only driving force favoring translational selection in all highly expressed genes of rice. We found that forces favoring translational selection differ between GC-rich and GC-poor classes of genes. Supporting our results we also showed that, in highly expressed genes of GC-poor class there is a perfect correspondence between majority of preferred codons and tRNA gene copy number that confers translational efficiencies to this group of genes. However, tRNA gene copy number is not fully consistent with models of translational selection in GC-rich group of genes, where constraints on mRNA secondary structure play a role to optimize codon usage in highly expressed genes. 相似文献
9.
Siddhartha Sankar Satapathy Bhes Raj Powdel Malay Dutta Alak Kumar Buragohain Suvendra Kumar Ray 《Gene》2014
It has been reported earlier that the relative di-nucleotide frequency (RDF) in different parts of a genome is similar while the frequency is variable among different genomes. So RDF is termed as genome signature in bacteria. It is not known if the constancy in RDF is governed by genome wide mutational bias or by selection. Here we did comparative analysis of RDF between the inter-genic and the coding sequences in seventeen bacterial genomes, whose gene expression data was available. The constraint on di-nucleotides was found to be higher in the coding sequences than that in the inter-genic regions and the constraint at the 2nd codon position was more than that in the 3rd position within a genome. Further analysis revealed that the constraint on di-nucleotides at the 2nd codon position is greater in the high expression genes (HEG) than that in the whole genomes as well as in the low expression genes (LEG). We analyzed RDF at the 2nd and the 3rd codon positions in simulated coding sequences that were computationally generated by keeping the codon usage bias (CUB) according to genome G+C composition and the sequence of amino acids unaltered. In the simulated coding sequences, the constraint observed was significantly low and no significant difference was observed between the HEG and the LEG in terms of di-nucleotide constraint. This indicated that the greater constraint on di-nucleotides in the HEG was due to the stronger selection on CUB in these genes in comparison to the LEG within a genome. Further, we did comparative analyses of the RDF in the HEG rpoB and rpoC of 199 bacteria, which revealed a common pattern of constraints on di-nucleotides at the 2nd codon position across these bacteria. To validate the role of CUB on di-nucleotide constraint, we analyzed RDF at the 2nd and the 3rd codon positions in simulated rpoB/rpoC sequences. The analysis revealed that selection on CUB is an important attribute for the constraint on di-nucleotides at these positions in bacterial genomes. We believe that this study has come with major findings of the role of CUB on di-nucleotide constraint in bacterial genomes. 相似文献
10.
Causal signals between codon bias,mRNA structure,and the efficiency of translation and elongation 下载免费PDF全文
Cristina Pop Silvi Rouskin Nicholas T Ingolia Lu Han Eric M Phizicky Jonathan S Weissman Daphne Koller 《Molecular systems biology》2014,10(12)
Ribosome profiling data report on the distribution of translating ribosomes, at steady‐state, with codon‐level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate‐reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation. 相似文献
11.
In order to understand the mechanism of protein folding and to assist the rational de-novo design of fast-folding, non-aggregating and stable artificial enzymes it is very helpful to be able to simulate protein folding reactions and to predict the structures of proteins and other biomacromolecules. Here, we use a method of computer programming called "evolutionary computer programming" in which a program evolves depending on the evolutionary pressure exerted on the program. In the case of the presented application of this method on a computer program for folding simulations, the evolutionary pressure exerted was towards faster finding deep minima in the energy landscape of protein folding. Already after 20 evolution steps, the evolved program was able to find deep minima in the energy landscape more than 10 times faster than the original program prior to the evolution process. 相似文献
12.
13.
Arif Uddin Tarikul Huda Mazumder Supriyo Chakraborty 《Journal of cellular physiology》2019,234(5):6397-6413
The mitochondrial cytochrome oxidase (CO) genes are involved in complex IV of the electron transport system, and dysfunction of CO genes leads to several diseases. However, no work has been reported on the codon usage pattern of these genes. We used bioinformatic methods to analyze the compositional properties and the codon usage pattern of the COI, COII, and COIII genes in fishes, birds, and mammals to understand the similarities and dissimilarities of codon usage in these genes, which gave an insight into the molecular biology of these genes. The effective number of codons (ENC) value of genes was high in different species of fishes, birds and mammals, which indicates that the codon bias of CO genes was low and the ENC values were significantly different among fishes, birds, and mammals, as revealed from the t test. The overall guanine and cytosine (GC) content in fishes, birds, and mammals was lower than 50% in all genes, indicating that the genes were AT-rich and significantly different among fishes, birds, and mammals. The TCA codon was overrepresented in fishes, birds, and mammals for the COI gene, in birds and mammals for the COII gene, but it was not overrepresented in others. Only three codons, namely CTA, CGA, and AAA, were overrepresented in all three groups for the COI, COII, and COIII genes, repectively. From the neutrality plot in fishes, birds, and mammals, it was observed that the slopes of the regression lines (regression coefficients) in the COI, COII, and COIII genes were <0.5, suggesting that natural selection played a major role, whereas mutation pressure played a minor role. 相似文献
14.
Biased usage of synonymous codons has been elucidated under the perspective of cellular tRNA abundance for quite a long time now. Taking advantage of publicly available gene expression data for Saccharomyces cerevisiae, a systematic analysis of the codon and amino acid usages in two different coding regions corresponding to the regular (helix and strand) as well as the irregular (coil) protein secondary structures, have been performed. Our analyses suggest that apart from tRNA abundance, mRNA folding stability is another major evolutionary force in shaping the codon and amino acid usage differences between the highly and lowly expressed genes in S. cerevisiae genome and surprisingly it depends on the coding regions corresponding to the secondary structures of the encoded proteins. This is obviously a new paradigm in understanding the codon usage in S. cerevisiae. Differential amino acid usage between highly and lowly expressed genes in the regions coding for the irregular protein secondary structure in S. cerevisiae is expounded by the stability of the mRNA folded structure. Irrespective of the protein secondary structural type, the highly expressed genes always tend to encode cheaper amino acids in order to reduce the overall biosynthetic cost of production of the corresponding protein. This study supports the hypothesis that the tRNA abundance is a consequence of and not a reason for the biased usage of amino acid between highly and lowly expressed genes. 相似文献
15.
About 200 mRNA sequences of Escherichia coli and human with matching protein secondary structure data were studied. The mRNA folding for each native sequence and for corresponding randomized sequences was calculated through free energy minimization. We have found that the folding energy of mRNA segments in different protein secondary structures is significantly different. The average Z score is more negative for regular secondary structure (alpha-helix and beta-strand) than that for coil. This suggests that the codon choice in native mRNA sequence coding for protein regular structure contributes more to the mRNA folding stability. 相似文献
16.
Kua-Chun Ou Chih-Yang Wang Kuan-Ting Liu Yi-Ling Chen Yi-Chen Chen Ming-Derg Lai Meng-Chi Yen 《Biochemical and biophysical research communications》2014
Transfer RNA (tRNA) abundance is one of the critical factors for the enhancement of protein productivity in prokaryotic and eukaryotic hosts. Gene copy number of tRNA and tRNA codon usage bias are generally used to match tRNA abundance of protein-expressing hosts and to optimize the codons of recombinant proteins. Because sufficient concentration of intracellular tRNA and optimized codons of recombinant proteins enhanced translation efficiency, we hypothesized that sufficient supplement of host’s tRNA improved protein productivity in mammalian cells. First, the small tRNA sequencing results of CHO-K1 cells showed moderate positive correlation with gene copy number and codon usage bias. Modification of human interleukin-2 (IL-2) through codons with high gene copy number and high codon usage bias (IL-2 HH, modified on Leu, Thr, Glu) significantly increased protein productivity in CHO-K1 cells. In contrast, modification through codons with relatively high gene copy number and low codon usage bias (IL-2 HL, modified on Ala, Thr, Val), or relatively low gene copy number and low codon usage bias (IL-2 LH, modified on Ala, Thr, Val) did not increase IL-2 productivity significantly. Furthermore, supplement of the alanine tRNA or threonine tRNA increased IL-2 productivity of IL-2 HL. In summary, we revealed a potential strategy to enhance productivity of recombinant proteins, which may be applied in production of protein drug or design of DNA vaccine. 相似文献
17.
Synonymous codon and amino acid usage biases have been investigated in 903 Mimivirus protein-coding genes in order to understand the architecture and evolution of Mimivirus genome. As expected for an AT-rich genome, third codon positions of the synonymous codons of Mimivirus carry mostly A or T bases. It was found that codon usage bias in Mimivirus genes is dictated both by mutational pressure and translational selection. Evidences show that four factors such as mean molecular weight (MMW), hydropathy, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in Mimivirus proteins. Based on our observation, we suggest that genes involved in translation, DNA repair, protein folding, etc., have been laterally transferred to Mimivirus a long ago from living organism and with time these genes acquire the codon usage pattern of other Mimivirus genes under selection pressure. 相似文献
18.
19.
Meshal M. Almutairi 《Saudi Journal of Biological Sciences》2021,28(8):4569-4574
Amino acids are essential measurements for the potential growth stage because of connecting to protein structures and functions. The objective of this paper was to analyze chromosomes feature at plastid region of rice represented by nucleotide, synonymous codon, and amino acid usage to predict gene expression through codon usage pattern. The results showed that the values of the codon adaption index ranged from 0.733 in chromosome 9 to 0.631 in chromosome 8 with full length of these two chromosomes were 3738 and 1635 respectively. The higher value of guanine and cytosine content was 60% in chromosomes 9 while the lower values was 37% in chromosomes 11. Eight chromosomes (ch1, ch2, ch3, ch5, ch7, ch8, ch10, and ch12) were greater value of modified relative codon bias than threshold (threshold: 0.66) especially in cysteine for ch1, ch2, ch5, ch10, and ch12. While other remaining chromosomes were less than the threshold. Relative synonymous codon usage found that the over-represented of amino acids were asparagine, aspartate, cysteine, glutamate, and phenylalanine across all 12 chromosomes. These results would establish a platform for more and further projects concerning rice breeding and genetics and codon optimization in the amino acids for developing varieties. These results also will help breeders to select desirable genes through the genome for improve target traits. 相似文献
20.
Miroci H Schob C Kindler S Ölschläger-Schütt J Fehr S Jungenitz T Schwarzacher SW Bagni C Mohr E 《The Journal of biological chemistry》2012,287(2):1322-1334
The poly(A)-binding protein (PABP), a key component of different ribonucleoprotein complexes, plays a crucial role in the control of mRNA translation rates, stability, and subcellular targeting. In this study we identify RING zinc finger protein Makorin 1 (MKRN1), a bona fide RNA-binding protein, as a binding partner of PABP that interacts with PABP in an RNA-independent manner. In rat brain, a so far uncharacterized short MKRN1 isoform, MKRN1-short, predominates and is detected in forebrain nerve cells. In neuronal dendrites, MKRN1-short co-localizes with PABP in granule-like structures, which are morphological correlates of sites of mRNA metabolism. Moreover, in primary rat neurons MKRN1-short associates with dendritically localized mRNAs. When tethered to a reporter mRNA, MKRN1-short significantly enhances reporter protein synthesis. Furthermore, after induction of synaptic plasticity via electrical stimulation of the perforant path in vivo, MKRN1-short specifically accumulates in the activated dendritic lamina, the middle molecular layer of the hippocampal dentate gyrus. Collectively, these data indicate that in mammalian neurons MKRN1-short interacts with PABP to locally control the translation of dendritic mRNAs at synapses. 相似文献