首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundAdipose tissue is an abundant source of mesenchymal stem cells (MSC), which can be used for tissue-engineering purposes. The aim of our study was to determine the more suitable procedure, surgical resection or liposuction, for harvesting human adipose tissue-derived stem cells (hASC) with regard to viability, cell count and differentiation potential.MethodsAfter harvesting hASC, trypan blue staining and cell counting were carried out. Subsequently, hASC were cultured, analyzed by fluorescence-activated cell sorting (FACS) and differentiated under adipogenic, osteogenic and chondrogenic conditions. Histologic and functional analyzes were performed at the end of the differentiation period.ResultsNo significant difference was found with regard to the cell counts of hASC from liposuction and surgically resected material (P = 0.086). The percentage of viable cells was significantly higher for liposuction aspirates than for resection material (P = 0.002). No significant difference was found in the adipogenic differentiation potential (P = 0.179). A significantly lower number of cultures obtained from liposuction material than from resection material could be differentiated into osteocytes (P = 0.049) and chondrocytes (P = 0.012).DiscussionEven though some lineages from lipoaspirated hASC can not be differentiated as frequently as those from surgically resected material, liposuction may be superior for some tissue-engineering purposes, particularly because of the less invasive harvesting procedure, the higher percentage of viable cells and the fact that there is no significant difference between lipoaspirated and resected hASC with regard to adipogenic differentiation potential.  相似文献   

2.
3.
《Phytomedicine》2014,21(2):118-122
Curcumin has been reported to inhibit insulin signaling and translocation of GLUT4 to the cell surface in 3T3-L1 adipocytes. We have investigated the effect of curcumin on insulin signaling in primary rat adipocytes. Curcumin (20 μM) inhibited both basal and insulin-stimulated glucose transport (2-deoxyglucose uptake), but had no effect on insulin inhibition of lipolysis. Dose–response experiments demonstrated that curcumin (0–100 μM) inhibited basal and insulin-stimulated glucose transport, but even at the highest concentration tested did not affect lipolysis. Inhibition was equal in cells that had been pre-incubated with curcumin and in cells to which curcumin was added immediately before the glucose transport assay. Similarly, time-course experiments revealed that the inhibitory effect of curcumin was evident at the earliest time point tested (30 s). Thus it is unlikely that inhibition of insulin signaling or of translocation of GLUT4 to the cell surface is involved in the inhibitory effect of curcumin. Curcumin did not affect the stimulatory action of insulin on phosphorylation of Akt at serine 473. We conclude that curcumin is a direct inhibitor of glucose transporters in rat adipocytes.  相似文献   

4.
5.
Otosclerosis is a complex disease characterized by an abnormal bone turnover of the otic capsule resulting in conductive hearing loss. Recent findings have shown that angiotensin II (Ang II), a major effector peptide of the renin–angiotensin system, plays an important role in the pathophysiology of otosclerosis, most likely by its proinflammatory effects on the bone cells. Because reactive oxygen species play a role both in inflammation and in the cellular signaling pathway of Ang II, the appearance of protein adducts of the “second messenger of free radicals,” the aldehyde 4-hydroxynonenal (HNE), in otosclerotic bone has been analyzed. Immunohistochemical analysis of HNE-modified proteins in tissue samples of the stapedial bones performed on 15 otosclerotic patients and 6 controls revealed regular HNE–protein adducts present in the subperiosteal parts of control bone specimens, whereas irregular areas of a pronounced HNE–protein adduct presence were found within stapedial bone in cases of otosclerosis. To study possible interference by HNE and Ang II in human bone cell proliferation, differentiation, and induction of apoptosis we used an in vitro model of osteoblast-like cells. HNE interacted with Ang II in a dose-dependent manner, both by forming HNE–Ang II adducts, as revealed by immunoblotting, and by modifying its effects on cultured cells. Namely, treatment with 0.1 nM Ang II and 2.5 μM HNE stimulated proliferation, whereas treatment with 10 μM HNE or in combination with Ang II (0.1, 0.5, and 1 nM) decreased cell proliferation. Moreover, 10 μM HNE alone and with Ang II (except if 1 nM Ang II was used) increased cellular differentiation and apoptosis. HNE at 5 μM did not affect differentiation nor significantly change apoptosis. On the other hand, when cells were treated with lower concentrations of HNE and Ang II we observed a decrease in cellular differentiation (combination of 1.0 or 2.5 μM HNE with 0.1 nM Ang II) and decrease in apoptosis (0.1 and 0.5 nM Ang II). Cellular necrosis was increased with 5 and 10 μM HNE if given alone or combined with Ang II, whereas 0.5 nM Ang II and combination of 1 μM HNE with Ang II (0.1 and 0.5 nM) reduced necrosis. These results indicate that HNE and Ang II might act mutually dependently in the regulation of bone cell growth and in the pathophysiology of otosclerosis.  相似文献   

6.
AimThis study aims to elucidate the independent role of mitochondria in the pathogenesis of insulin resistance (IR).MethodsCybrids derived from 143B osteosarcoma cell line and harboring the same nuclear DNA but different mitochondrial haplogroups were studied. Cybrid B4 (the major diabetes-susceptible haplogroup in Chinese population), cybrid D4 (the major diabetes-resistant haplogroup in Chinese population) and cybrid N9 (the diabetes-resistant haplogroup in Japanese population) were cultured in a medium containing 25 mM glucose and stimulated with 0 μM, 0.1 μM, and 1.0 μM insulin. We compared the insulin activation of PI3K–Akt (glucose uptake) and ERK–MAPK (pro-inflammation) signaling pathways, intracellular and mitochondrial oxidative stress (DCF and MitoSOX Red), and their responses to the antioxidant N-acetylcysteine (NAC).ResultsUpon insulin treatment, the translocation of cytoplasmic GLUT1/GLUT4 to the cell membrane in cybrid D4 and N9 cells increased significantly, whereas the changes in B4 cells were not or less significant. On the contrary, the ratio of insulin-induced JNK and P38 to Akt phosphorylation was significantly greater in cybrid B4 cells than in cybrid D4 and N9 cells. The levels of DCF and MitoSOX Red, which are indicative of the oxidative stress, were significantly higher in the B4 cells in basal conditions and after insulin treatment. Following treatment with the antioxidant NAC, cybrid B4 cells showed significantly reduced insulin-induced phosphorylation of P38 and increased GLUT1/GLUT4 translocation to the cell membrane, suggesting that NAC may divert insulin signaling from pro-inflammation to glucose uptake.ConclusionsMitochondria play an independent role in the pathogenesis of IR, possibly through altered production of intracellular ROS.  相似文献   

7.
The initial attachment of mesenchymal stem cells (MSCs) to substrates and osteogenic differentiation are supported by culture on a hydroxyapatite substrate. Cell attachment areas of rat MSCs after 2 h of culture on hydroxyapatite substrates with various microstructures and the osteogenic differentiation activity thereafter were measured. The perceived outcome was that, after 2 h of culture, rat MSCs with a small attachment area would have a high osteogenic differentiation activity, whereas those with a large attachment area would have a low osteogenic differentiation activity. Furthermore, rat MSCs with a small attachment area had many cytoplasmic processes, while those with a large attachment area revealed clear stress fibers and focal contacts. These results suggest that cell attachment area of rat MSCs after 2 h of culture has a strong effect on the osteogenic differentiation of rat MSCs. Thus, the measurement of cell attachment area after 2 h of culture could become valuable for estimating the osteogenic differentiation activity of rat MSCs thereafter.  相似文献   

8.
《Phytomedicine》2014,21(5):682-688
IntroductionResistance of cancer cells to chemotherapy has become a worldwide concern. Naturally occuring isoflavonoids possess a variety of biological activities including anti-cancer effects. The present study was aimed at investigating the cytotoxicity and the modes of action of three naturally occuring isoflavonoids, neobavaisoflavone (1), sigmoidin H (2) and a pterocarpan that is a special type of isoflavonoid, isoneorautenol (3) against a panel of nine cancer cell lines, including various sensitive and drug-resistant phenotypes.MethodsThe cytotoxicity of the compounds was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with compounds 3. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS).ResultsCompounds 3 showed significant cytotoxicity toward sensitive and drug-resistant cancer cell lines. Compounds 1 and 2 were selectively active, and IC50 values below 115 μM were obtained on 6/9 and 4/9 cell lines respectively with values ranging from 42.93 μM (toward CCRF-CEM cells) to 114.64 μM [against HCT116 (p53+/+) cells] for 1 and 25.59 μM (toward U87MG) to 110.51 μM [against HCT116 (p53+/+) cells] for 2. IC50 values ranging from 2.67 μM (against MDA-MB 237BCRP cells) to 21.84 (toward U87MG) were measured for compound 3 and between 0.20 μM (toward CCRF-CEM cells) and 195.12 μM (toward CEM/ADR5000 cells) for doxorubicin as control drug. BCRP-transfected MDA-MB-231 cells, HCT116 (p53+/+) and U87MG.ΔEGFR cells were hypersensitive (collateral sensitive) to compound 3 as compared to their counterpart cell lines. Compound 3 induced apoptosis in CCRF-CEM cells via activation of caspases 3/7, 8 and 9 as well as the loss of MMP and increased ROS production.ConclusionsThe cytotoxicity of the studied isoflavonoids and especially the pterocarpan 3 deserve more detailed exploration in the future to develop novel anticancer drugs against sensitive and otherwise drug-resistant phenotypes.  相似文献   

9.
A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N6-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations.  相似文献   

10.
Osteoclasts are multinucleated bone resorbing cells which form by fusion of pre-osteoclasts. Here, we investigate how nitric oxide (NO) affects osteoclastogenesis. Time lapse photomicrography, using the fluorescent NO indicator dye, 4,5-diaminofluorescein diacetate, revealed an intense NO signal in pre-osteoclasts preceding cell fusion. Osteoclastogenesis in RAW264.7 cells increased when exposed to the NO synthase inhibitor, l-NMMA (0.25 μM), for the initial 48 h. In contrast, pre-osteoclast fusion decreased when RAW264.7 cells were exposed to l-NMMA from 48 to 96 h. Both NO synthase inhibitors, l-NMMA and l-NAME, decreased osteoclast formation during this time period. The inhibitory effect of l-NMMA on osteoclast formation was abolished with increasing concentrations (25–200 ng/ml) of sRANKL suggesting signaling cross talk. NO donors increased osteoclast formation in a dose-dependent manner, with greatest stimulation at 15 μM NOC-12 (2.3 fold) and 5 μM NOC-18 (2.4 fold). Measuring nitrite (NO end product) daily from culture media of RAW264.7 cells undergoing osteoclastogenesis revealed that an increase in NO production coincided with the fusion of pre-osteoclasts (day 4). Inhibiting fusion by plating cells on polystyrene dishes pre-coated with poly-(l-lysine) decreased both osteoclast formation and NO production. To address if NO mediates fusion through the actin cytoskeleton, actin free barbed ends were measured. 0.25 μM l-NMMA decreased, while 15 μM NOC-12 and 5 μM NOC-18 increased actin free barbed ends. We hypothesize that while NO initially negatively regulates pre-osteoclast differentiation; it later facilitates the fusion of mononuclear pre-osteoclasts, possibly by up regulating actin remodeling.  相似文献   

11.
12.
The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (P < 0.01) increase in the rate of insulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (P < 0.05) than that produced by tigerinin-1R. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM indicating that plasma membrane integrity had been preserved. [A5W] tigerinin-1R was the only analog tested that showed cytotoxic activity against human erythrocytes (LC50 = 265 ± 16 μM) and inhibited growth of Escherichia coli (MIC = 500 μM) and Staphylococcus aureus (MIC = 250 μM). The circular dichroism spectra of tigerinin-1R and [A5W] tigerinin-1R indicate that the peptides adopt a mixture of β-sheet, random coil and reverse β-turn conformations in 50% trifluoroethanol/water and methanol/water. Administration of [S4R] tigerinin-1R (75 nmol/kg body weight) to high-fat fed mice with insulin resistance significantly (P < 0.05) enhanced insulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.  相似文献   

13.
14.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

15.
Background aimsHuman mesenchymal stromal cells (MSC) are multipotent cells possessing self-renewal capacity, long-term viability and multilineage potential. We analyzed the effect of four different medium supplements on the expansion and differentiation of adipose tissue-derived MSC (ADSC) in order to avoid the use of xenogeneic serum.MethodsWe compared fetal bovine serum (FBS) with 10% human platelet-rich plasma (hPRP), 3% human platelet-poor plasma (hPPP) and with a cytokine cocktail composed of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and platelet-derived growth factor-bb (PDGFbb) added to 3% hPPP. This mixture was developed testing EGF, bFGF, granulocyte–colony-stimulating factor (G-CSF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF-I), PDGFbb and transforming growth factor (TGF)-β1 added alone or in combination with hPPP.ResultsOur data demonstrate that the addition of EGF, bFGF and PDGFbb, in a medium supplemented with hPPP, obtainable from 150–200 mL whole autologous blood, supports ADSC expansion better than FBS, as confirmed by cumulative population doublings (cPD; 15.0 ± 0.5 versus 9.4 ± 2.8). The addition of human platelet-rich plasma (hPRP) further improved ADSC proliferation (cPD 20.0 ± 1.2), but the achievement of hPRP presented a major drawback, requiring 1000–1200 mL autologous or donor whole blood. The medium supplements did not influence ADSC phenotype: they expressed CD105, CD90 and CD44 lacking hematopoietic antigens. The exposure to the proposed cocktail or to hPRP increased adipogenic and osteogenic differentiation.ConclusionsThe addition of EGF, bFGF and PDGFbb to hPPP could ensure a sufficient number of ADSC for clinical applications, avoiding the use of animal serum and representing a novel approach in regenerative medicine.  相似文献   

16.
Protoporphyrin IX (PPIX) lipids were synthesized by introducing a long alkyl chain, such as C13, C15, and C17, at each vinyl group on PPIX via hydrobromination. The PPIX lipids exhibited a water-soluble property by forming their micelles in water and the PPIX–lipid micelles showed relatively low cytotoxicity toward HeLa cells (IC50 = 151.7–379.9 μM) without light irradiation. PL-C17 liposomes (post-inserted liposomes) were readily prepared by adding PL-C17 micelle solution to the liposome solution. The IC50 values of PPIX, PL-C17 micelles, and PL-C17 liposomes toward HeLa cells were 0.53, 5.65, and 12.9 μM, respectively, after irradiation with a xenon lamp in the 400–800 nm range for 2 min. PL-C17 liposomes were selectively accumulated in the Golgi apparatus in cells.  相似文献   

17.
Current study was aimed to investigate the effect of dihydromyricetin on hydrogen peroxide induced oxidative stress in the osteosarcoma cells. MTT assay showed that hydrogen peroxide treatment at a concentration of 100 μM caused a significant (p < 0.005) reduction in the viability of MG63 cells. However, reduction in cell viability caused by 100 μM concentration of hydrogen peroxide was completely prevented on incubation with 30 μM dose of dihydromyricetin. Treatment with 100 μM concentration of hydrogen peroxide for 24 h led to condensation of chromatin material, rounding of cell shape and detachment of cells. The results from flow cytometry using annexin V-FITC and PI double staining showed apoptosis induction in 47.84 ± 5.21% cells on treatment with 100 μM concentration of hydrogen peroxide compared to 2.32 ± 0.54% in controlcells. The apoptotic alterations in MG63 cell morphology were prevented significantly on pre-treatment with 30 μM doses of dihydromyricetin for 48 h. Annexin V-FITC and PI staining showed reduction of hydrogen peroxide induced apoptotic cell percentage to 3.07 ± 0.86% on pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin. Western blot analysis showed a significant increase in the activation of caspase-3 and -9 on treatment of MG63 cells for 24 h with 100 μM concentration of hydrogen peroxide. The expression level of Bcl-2 was decreased significantly by 100 μM concentration of hydrogen peroxide in MG63 cells. However, pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin for 48 h significantly prevented hydrogen peroxide induced increase in caspase-3 and -9 levels and reduction in Bcl-2 level. Thus dihydromyricetin prevents hydrogen peroxide induced reduction in viability and induction of apoptosis in MG63 cells through down-regulation of caspase activation and up-regulation of Bcl-2 levels.  相似文献   

18.
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 μM resveratrol (but not with 62.5 μM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO2 release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol.In adipocytes incubated for 90 min with epinephrine, 10 and 100 μM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 μM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 μM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine.Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells.  相似文献   

19.
This paper described an ingenious approach for the fabrication of a promising biosensor, hemoglobin (Hb)/chitosan (Chit)–ionic liquid (IL)–ferrocene (Fc)/graphene (Gr)/glassy carbon electrode (GCE), that exploited the synergistic beneficial characteristics of Fc, Gr and IL for Hb. The proposed biosensor showed a strong electrocatalytic activity toward the reduction of H2O2, which could be attributed to the favored orientation of Hb in the well-confined surface as well as the high electrical conductivity of the resulting Chit–IL–Fc/Gr inorganic hybrid composite. The developed biosensor exhibited a fast amperometric response (2 s), a good linear response toward H2O2 over a wide range of concentration from 50 μM to 1200 μM, and a low detection limit of 3.8 μM. The apparent Michaelis–Menten constant (Km) of Hb on the composite medium was 0.16 mM, showing high bioelectrocatalytic activity of immobilized protein toward H2O2 reduction. High sensitivity and stability, technically simple and possibility of preparation at short period of time are of great advantages of the developed biosensors.  相似文献   

20.
Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号