首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hyaluronan (HA) oligosaccharides stimulate pro-inflammatory responses in different cell types by modulating both cluster determinant 44 (CD44) and TLR4. The activation of these receptors is also mediated by collagen-induced arthritis (CIA) that, via two different pathways, culminates in the liberation of NF-κB. This then stimulates the production of pro-inflammatory cytokines, including IL-18 and IL-33, that are greatly involved in rheumatoid arthritis. The aim of this study was to investigate the effects of 6-mer HA oligosaccharides on mouse synovial fibroblasts obtained from normal DBA/J1 mice or mice subjected to CIA. Compared with normal synovial fibroblasts (NSF), rheumatoid arthritis synovial fibroblasts (RASF) showed no up-regulation of CD44 and TLR4 mRNA expression and the related proteins, as well as no activation of NF-κB. Very low levels of both mRNA and related proteins were also detected for IL-18 and IL-33. Treatment of NSF and RASF with 6-mer HA oligosaccharides significantly increased all the parameters in both fibroblast groups, although to a greater extent in RASF. The addition of hyaluronan binding protein to both NSF and RASF inhibited HA activity and was able to reduce the effects of 6-mer HA oligosaccharides and the consequent inflammatory response.  相似文献   

2.
The tumor microenvironment makes a decisive contribution to the development and dissemination of cancer, for example, through extracellular matrix components such as hyaluronan (HA), and through chemokines that regulate tumor cell behavior and angiogenesis. Here we report a molecular link between HA, its receptor CD44 and the chemokine CXCL12 in the regulation of cell motility and angiogenesis. High-molecular-weight HA (hHA) was found to augment CXCL12-induced CXCR4 signaling in both HepG2iso cells and primary human umbilical vein endothelial cells, as evidenced by enhanced ERK phosphorylation and increased cell motility. The augmentation of CXCR4 signaling translated into increased vessel sprouting and angiogenesis in a variety of assays. Small HA oligosaccharides (sHA) efficiently inhibited these effects. Both siRNA-mediated reduction of CD44 expression and antibodies that block the interaction of CD44 with HA provided evidence that CXCL12-induced CXCR4 signaling depends on the binding of hHA to CD44. Consistently, CD44 and CXCR4 were found to physically interact in the presence of CXCL12, an interaction that could be inhibited by sHA. These findings provide novel insights into how microenvironmental components interact with cell surface receptors in multi-component complexes to regulate key aspects of tumor growth and progression.  相似文献   

3.
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.  相似文献   

4.
Hyaluronan (HA) degradation produces small oligosaccharides that are able to increase pro-inflammatory cytokines in rheumatoid arthritis synovial fibroblasts (RASF) by activating both CD44 and the toll-like receptor 4 (TLR-4). CD44 and TLR-4 stimulation in turn activate the NF-kB that induces the production of pro-inflammatory cytokines. Degradation of HA occurs via two mechanisms: one exerted by reactive oxygen species (ROS) and one controlled by different enzymes in particular hyaluronidases (HYALs). We aimed to investigate the effects of inhibiting HA degradation (which prevents the formation of small HA fragments) on synovial fibroblasts obtained from normal DBA/J1 mice (NSF) and on synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA), both fibroblast types stimulated with tumor necrosis factor alpha (TNF-α). TNF-α stimulation produced high mRNA expression and the related protein production of CD44 and TLR-4 in both NSF and RASF, and activation of NF-kB was also found in all fibroblasts. TNF-α also up-regulated the inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and other pro-inflammatory mediators, such as matrix metalloprotease-13 (MMP-13), inducible nitric oxide synthase (iNOS), as well as HA levels and small HA fragment production. Treatment of RASF with antioxidants and specific HYAL1, HYAL2, and HYAL3 small interference RNA (siRNAs) significantly reduced TLR-4 and CD44 increase in the mRNA expression and the related protein synthesis, as well as the release of inflammatory mediators up-regulated by TNF-α. These data suggest that the inhibition of HA degradation during arthritis may contribute to reducing TLR-4 and CD44 activation and the inflammatory mediators response.  相似文献   

5.
Hyaluronan uptake by adult human skin fibroblasts in vitro   总被引:3,自引:0,他引:3  
Low and high molecular weight hyaluronan (HA) was added to adult human fibroblasts grown in monolayer to assess its influence on CD44 expression, its internalisation and effect on cell growth. CD44 expression on the surface of in vitro fibroblasts was not modified by different concentrations of FCS, whereas it was sensitive to cell cycle, being higher in the growing than in the resting phase. Independently from molecular weight, upon addition of exogenous HA (from 0.1 up to 1 mg/mL) to fibroblasts in the growing phase, a slight but constant decrease of the expression of CD44 on the surface of fibroblasts was observed; moreover, HA induced a rearrangement of CD44 into patches in close relationship with the terminal regions of stress fibers, which became thicker and more rigid after a few hours from the addition of HA to the medium. Fluorescent HA, added to the culture medium, rapidly attached to the plasma membrane and in less than two minutes was observed within cells, partly in association with its receptor CD44. By the contemporary use of neutral red, which accumulates into functional lysosomes, the great majority of internalised HA was found within lysosomes. HA receptor RHAMM-IHABP was rather homogeneously localised within the cytoplasm of normal growing fibroblasts. Upon addition of HA, the RHAMM-IHABP distribution became discontinuous around the nucleus. Addition of HA to fibroblasts induced a significant inhibition of cell growth, which was dependent on HA concentration and irrespective of HA molecular weight, at least in the ranges tested. Results show that extra-cellular HA is rapidly taken up by human dermal fibroblasts together with its CD44 receptor, and transported mostly to the lysosomes. Both low and high molecular weight HA induced down-regulation of cell proliferation, which would seem to be mediated by HA catabolism.  相似文献   

6.
Wong CK  Leung KM  Qiu HN  Chow JY  Choi AO  Lam CW 《PloS one》2012,7(1):e29815

Background

IL-31 is a pruritogenic cytokine, and IL-33 is an alarmin for damaging inflammation. They together relate to the pathogenesis of atopic dermatitis (AD). Eosinophil infiltration into the inner dermal compartment is a predominant pathological feature of AD. We herein investigated the in vitro inflammatory effects of IL-31 and IL-33 on the activation of human eosinophils and dermal fibroblasts.

Methodology/Principal Findings

Receptors, adhesion molecules and signaling molecules were assessed by Western blot or flow cytometry. Chemokines and cytokine were quantitated by multiplex assay. Functional IL-31 receptor component IL-31RA, OSMR-β and IL-33 receptor component ST2 were constitutively expressed on the surface of eosinophils. Co-culture of eosinophils and fibroblasts significantly induced pro-inflammatory cytokine IL-6 and AD-related chemokines CXCL1, CXCL10, CCL2 and CCL5. Such inductions were further enhanced with IL-31 and IL-33 stimulation. IL-31 and IL-33 could significantly provoke the release of CXCL8 from eosinophils and fibroblasts, respectively, which was further enhanced upon co-culture. In co-culture, eosinophils and fibroblasts were the main source for the release of CCL5, and IL-6, CXCL1, CXCL8, CXCL10 and CCL2, respectively. Direct interaction between eosinophils and fibroblasts was required for CXCL1, CXCL10, CXCL8 and CCL5 release. Cell surface expression of intercellular adhesion molecule-1 on eosinophils and fibroblasts was up-regulated in co-culture upon IL-31 and IL-33 stimulation. The interaction between eosinophils and fibroblasts under IL-31 and IL-33 stimulation differentially activated extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, nuclear factor-κB and phosphatidylinositol 3-kinase–Akt pathways. Using specific signaling molecule inhibitors, the differential induction of IL-31 and IL-33-mediated release of cytokines and chemokines such as IL-6 and CXCL8 from co-culture should be related to their distinct activation profile of intracellular signaling pathways.

Conclusions/Significance

The above findings suggest a crucial immunopathological role of IL-31 and IL-33 in AD through the activation of eosinophils-fibroblasts interaction via differential intracellular signaling mechanisms.  相似文献   

7.
Hyaluronan (HA), in the bone marrow stroma, is the major non-protein glycosaminoglycan component of extracellular matrix (ECM) involved in cell positioning, proliferation, differentiation as well as in receptor-mediated changes in gene expression. Repair of bone and regeneration of bone marrow is dependent on ECM, inflammatory factors, like chemokines and degradative factors, like metalloproteinases. We analyzed the interaction between human mesenchymal stem cells (h-MSCs) and a three-dimensional (3-D) HA-based scaffold in vitro. The expression of CXC chemokines/receptors, CXCL8 (IL-8)/CXCR1-2, CXCL10 (IP-10)/CXCR3, CXCL12 (SDF-1)/CXCR4, and CXCL13 (BCA-1)/CXCR5, and metalloproteinases/inhibitors MMP-1, MMP-3, MMP-13/TIMP-1 were evaluated in h-MSCs grown on plastic or on HA-based scaffold by Real-time PCR, ELISA, and immunocytochemical techniques. Moreover, the expression of two HA receptors, CD44 and CD54, was analyzed. We found both at mRNA and protein levels that HA-based scaffold induced the expression of CXCR4, CXCL13, and MMP-3 and downmodulated the expression of CXCL12, CXCR5, MMP-13, and TIMP-1 while HA-based scaffold induced CD54 expression but not CD44. We found that these two HA receptors were directly involved in the modulation of CXCL12, CXCL13, and CXCR5. This study demonstrates a direct action of a 3-D HA-based scaffold, widely used for cartilage and bone repair, in modulating both h-MSCs inflammatory and degradative factors directly involved in the engraftment of specific cell types in a damaged area. Our data clearly demonstrate that HA in this 3-D conformation acts as a signaling molecule for h-MSCs.  相似文献   

8.
We have recently shown that systemic administration of low molecular weight hyaluronan (LMW HA) significantly reduces colorectal carcinoma (CRC) growth in vivo. The elicited response is partially mediated by activated dendritic cells (DC). To potentiate the ability of DC loaded with whole tumor lysate (DC/TL) to induce immunity against CRC in mice, we aimed to study the effects of preconditioning DC with LMW HA for therapeutic vaccination. LMW HA improved maturation of ex vivo generated DC, increased IL-12, decreased IL-10 production, and enhanced a MLR activity in vitro. Although TNF-α showed a similar capacity to mature DC, preconditioning of DC/TL with LMW HA increased their ability to migrate in vitro toward CCL19 and CCL-21 in a CD44- and a TLR4-independent manner; this effect was superior to Poly(I:C), LPS, or TNF-α and partially associated with an increase in the expression of CCR7. Importantly, LMW HA dramatically enhanced the in vivo DC recruitment to tumor-regional lymph nodes. When these LMW HA-treated CRC tumor lysate-pulsed DC (DC/TL/LMW HA) were administered to tumor-bearing mice, a potent antitumor response was observed when compared to DC pulsed with tumor lysate alone and matured with TNF-α. Then, we showed that splenocytes isolated from animals treated with DC/TL/LMW HA presented a higher proliferative capacity, increased IFN-γ production, and secreted lower levels of the immunosuppressive IL-10. Besides, increased specific CTL response was observed in DC/TL/LMW HA-treated animals and induced long-term protection against tumor recurrence. Our data show that LMW HA is superior to other agents at inducing DC migration; therefore, LMW HA could be considered a new adjuvant candidate in the preparation of DC-based anticancer vaccines with potent immunostimulatory properties.  相似文献   

9.
This study aims to understand the role of the matrix polysaccharide hyaluronan (HA) in influencing fibroblast proliferation and thereby affecting wound healing outcomes. To determine mechanisms that underlie scarred versus scar-free healing, patient-matched dermal and oral mucosal fibroblasts were used as models of scarring and non-scarring fibroblast phenotypes. Specifically, differences in HA generation between these distinct fibroblast populations have been examined and related to differences in transforming growth factor-beta(1) (TGF-beta(1))-dependent proliferative responses and Smad signaling. There was a differential growth response to TGF-beta(1), with it inducing proliferation in dermal fibroblasts but an anti-proliferative response in oral fibroblasts. Both responses were Smad3-dependent. Furthermore, the two fibroblast populations also demonstrated differences in their HA regulation, with dermal fibroblasts generating increased levels of HA, compared with oral fibroblasts. Inhibition of HA synthesis in dermal fibroblasts was shown to abrogate the TGF-beta(1)-mediated induction of proliferation. Inhibition of HA synthesis also led to an attenuation of Smad3 signaling in dermal fibroblasts. Microarray analysis demonstrated no difference in the genes involved in TGF-beta(1) signaling between dermal and oral fibroblasts, whereas there was a distinct difference in the pattern of genes involved in HA regulation. In conclusion, these two distinct fibroblast populations demonstrate a differential proliferative response to TGF-beta(1), which is associated with differences in HA generation. TGF-beta(1) regulates proliferation through Smad3 signaling in both fibroblast populations; however, it is the levels of HA generated by the cells that influence the outcome of this response.  相似文献   

10.
Interleukin-1beta (IL-1beta) elicits the expression of inflammatory mediators through a mechanism involving the CD44 receptor. Hyaluronan (HA) depolymerization also contributes to CD44 activation. This study investigated the potential of HA fragments, obtained by hyaluronidase (HYAL) treatment, as mediators of CD44 activation on IL-1beta-induced inflammation in mouse chondrocytes.mRNA and related protein levels were measured for CD44, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in chondrocytes, treated or untreated with IL-1beta, either with or without the addition of HYAL. The level of NF-kB activation was also assayed.CD44 mRNA expression was higher than controls in chondrocytes treated with IL-1beta. IL-1beta also induced NF-kB up-regulation and increased TNF-alpha, IL-6, MMP-13 and iNOS expression. Different effects resulted from HYAL treatment. Treatment of chondrocytes exposed to IL-1beta with HYAL synergistically increased the same parameters up-regulated by IL-1beta, while the same parameters were increased by HYAL in chondrocytes not exposed to IL-1beta but to a lesser extent. Specific CD44 blocking antibody and hyaluronan binding protein (HABP), which inhibit HA activity, were used to confirm CD44 to be the target of IL-1beta action through HA mediation. HA levels and molecular size further confirm the role of degraded HA.These findings suggest that IL-1beta exerts inflammatory activity via CD44 by the mediation of HA fragments derived from HA depolymerization.  相似文献   

11.
Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium   总被引:41,自引:0,他引:41  
The glycosaminoglycan hyaluronan is a key substrate for cell migration in tissues during inflammation, wound healing, and neoplasia. Unlike other matrix components, hyaluronan (HA) is turned over rapidly, yet most degradation occurs not locally but within distant lymph nodes, through mechanisms that are not yet understood. While it is not clear which receptors are involved in binding and uptake of hyaluronan within the lymphatics, one likely candidate is the lymphatic endothelial hyaluronan receptor LYVE-1 recently described in our laboratory (Banerji, S., Ni, J., Wang, S., Clasper, S., Su, J., Tammi, R., Jones, M., and Jackson, D.G. (1999) J. Cell Biol. 144, 789-801). Here we present evidence that LYVE-1 is involved in the uptake of hyaluronan by lymphatic endothelial cells using a new murine LYVE-1 orthologue identified from the EST data base. We show that mouse LYVE-1 both binds and internalizes hyaluronan in transfected 293T fibroblasts in vitro and demonstrate using immunoelectron microscopy that it is distributed equally among the luminal and abluminal surfaces of lymphatic vessels in vivo. In addition, we show by means of specific antisera that expression of mouse LYVE-1 remains restricted to the lymphatics in homozygous knockout mice lacking a functional gene for CD44, the closest homologue of LYVE-1 and the only other Link superfamily HA receptor known to date. Together these results suggest a role for LYVE-1 in the transport of HA from tissue to lymph and imply that further novel hyaluronan receptors must exist that can compensate for the loss of CD44 function.  相似文献   

12.
CD44 is a cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is involved in processes ranging from leukocyte recruitment to wound healing. In the immune system, the binding of hyaluronan to CD44 is tightly regulated, and exposure of human peripheral blood monocytes to inflammatory stimuli increases CD44 expression and induces hyaluronan binding. Here we sought to understand how mouse macrophages regulate hyaluronan binding upon inflammatory and anti-inflammatory stimuli. Mouse bone marrow-derived macrophages stimulated with tumor necrosis factor α or lipopolysaccharide and interferon-γ (LPS/IFNγ) induced hyaluronan binding by up-regulating CD44 and down-regulating chondroitin sulfation on CD44. Hyaluronan binding was induced to a lesser extent in interleukin-4 (IL-4)-activated macrophages despite increased CD44 expression, and this was attributable to increased chondroitin sulfation on CD44, as treatment with β-d-xyloside to prevent chondroitin sulfate addition significantly enhanced hyaluronan binding. These changes in the chondroitin sulfation of CD44 were associated with changes in mRNA expression of two chondroitin sulfotransferases, CHST3 and CHST7, which were decreased in LPS/IFNγ-stimulated macrophages and increased in IL-4-stimulated macrophages. Thus, inflammatory and anti-inflammatory stimuli differentially regulate the chondroitin sulfation of CD44, which is a dynamic physiological regulator of hyaluronan binding by CD44 in mouse macrophages.  相似文献   

13.
14.
Hyaluronan is a glycosaminoglycan of the extracellular matrix. In tumors and during chronic inflammatory diseases, hyaluronan is degraded to smaller fragments, which are known to stimulate endothelial cell differentiation. In this study, we have compared the molecular mechanisms through which hyaluronan dodecasaccharides (HA12), and the known angiogenic factor, fibroblast growth factor 2 (FGF-2), induce capillary endothelial cell sprouting in a three-dimensional collagen gel. The gene expression profiles of unstimulated and HA12- or FGF-2-stimulated endothelial cells were compared using a microarray analysis approach. The data revealed that both FGF-2 and HA12 promoted endothelial cell morphogenesis in a process depending on the expression of ornithine decarboxylase (Odc) and ornithine decarboxylase antizyme inhibitor (Oazi) genes. Among the genes selectively up-regulated in response to HA12 was the chemokine CXCL1/GRO1 gene. The notion that the induction of CXCL1/GRO1 is of importance for HA12-induced endothelial cell sprouting was supported by the fact that morphogenesis was inhibited by antibodies specifically neutralizing the CXCL1/GRO1 protein product. HA12-stimulated endothelial cell differentiation was exerted via binding to CD44 since it was inhibited by antibodies blocking CD44 function. Our data show that hyaluronan fragments and FGF-2 affect endothelial cell morphogenesis by the induction of overlapping but also by distinct sets of genes.  相似文献   

15.
The proinflammatory cytokine interleukin-1β (IL-1β) attracts leukocytes to sites of inflammation. One of the recruitment mechanisms involves the formation of extended, hyaluronan-rich pericellular coats on local fibroblasts, endothelial cells, and epithelial cells. In the present work, we studied how IL-1β turns on the monocyte adhesion of the hyaluronan coat on human keratinocytes. IL-1β did not influence hyaluronan synthesis or increase the amount of pericellular hyaluronan in these cells. Instead, we found that the increase in the hyaluronan-dependent monocyte binding was associated with the CD44 of the keratinocytes. Although IL-1β caused a small increase in the total amount of CD44, a more marked impact was the decrease of CD44 phosphorylation at serine 325. At the same time, IL-1β increased the association of CD44 with ezrin and complex formation of CD44 with itself. Treatment of keratinocyte cultures with KN93, an inhibitor of calmodulin kinase 2, known to phosphorylate Ser-325 in CD44, caused similar effects as IL-1β (i.e. homomerization of CD44 and its association with ezrin) and resulted in increased monocyte binding to keratinocytes in a hyaluronan-dependent way. Overexpression of wild type CD44 standard form, but not a corresponding CD44 mutant mimicking the Ser-325-phosphorylated form, was able to induce monocyte binding to keratinocytes. In conclusion, treatment of human keratinocytes with IL-1β changes the structure of their hyaluronan coat by influencing the amount, post-translational modification, and cytoskeletal association of CD44, thus enhancing monocyte retention on keratinocytes.  相似文献   

16.
Hyaluronan, a high-molecular-weight glycosaminoglycan of the extracellular matrix, is prominent during rapid tissue growth and repair. It stimulates cell motility and hydrates tissue, providing an environment that facilitates cell movement. Markedly enhanced levels of hyaluronan also occur in the stroma surrounding human cancers, thus providing an environment that promotes spread of cancer cells. The ability of malignant tumors to generate lactate, even in the presence of adequate oxygen, is known as the Warburg effect. Early in wound healing as blood and oxygen supply decrease, lactate levels increase, as does stromal hyaluronan, suggesting a cause-and-effect relationship. Similarly, peritumor stromal fibroblast hyaluronan may be a response to cancer cell lactate. To test this, fibroblasts were cultured in the presence of lactate. With increasing lactate, higher levels of hyaluronan were observed, as were levels of CD44 expression, the predominant receptor for hyaluronan. The ability of tumor cells to utilize anaerobic metabolism and to generate lactate, even in the presence of adequate supplies of oxygen, may be one of the mechanisms used to recruit host fibroblasts to deposit hyaluronan and to express CD44, thereby participating in the process of cancer invasion and metastasis.  相似文献   

17.
The importance of glycosaminoglycan hyaluronan (HA) and its receptor CD44 in cell proliferation is becoming increasingly evident. Expression of the genes coding for hyaluronan synthase 1 (HAS1), HAS2, HAS3, CD44, fibroblast growth factor-2 (FGF-2), and FGF receptor-1 (FGFR-1) and the histological evidence for increases of HA and CD44 were investigated in an experimental rat model of cardiac hypertrophy. The abdominal aorta was ligated to induce cardiac hypertrophy, and mRNAs prepared from heart tissue were analyzed after 1, 6, and 42 days. The total concentration of HA was quantified, and HA and CD44 were studied histochemically. The expression of HAS1, HAS2, CD44, and FGF-2 was considerably up-regulated at days 1 and 6 and returned to basal levels after 42 days. FGFR-1 was up-regulated at day 1 but at basal levels once more at days 6 and 42. The concentration of HA significantly increased in aorta-ligated rats. Histochemical analysis showed increased expression of CD44 in hypertrophied myocardium mainly in and around the coronary arteries. These results agree well with other studies of tissue growth (malignancies and wound healing). The increase of HA, its synthases, and receptor in parallel with FGF-2 and its receptor illustrates their complicated interplay in the development of cardiac hypertrophy. The up-regulation of both HAS1 and HAS2 indicates the importance of HA production in the hypertrophic process and the possibility that HA is needed for two different purposes for the heart to be able to adapt to the increased afterload caused by aortic ligature. This research received financial support from the Swedish Heart Lung Foundation. The authors declare no conflicting financial interests.  相似文献   

18.
19.
Pressure ulcers are characterized by chronicity, which results in delayed wound healing due to pressure. Early intervention for preventing delayed healing due to pressure requires a prediction method. However, no study has reported the prediction of delayed healing due to pressure. Therefore, this study focused on biological response-based molecular markers for the establishment of an assessment technology to predict delayed healing due to pressure. We tested the hypothesis that sustained compressive loading applied to three dimensional cultured fibroblasts leads to upregulation of heat shock proteins (HSPs), CD44, hyaluronan synthase 2 (HAS2), and cyclooxygenase 2 (COX2) along with apoptosis via disruption of adhesion. First, sustained compressive loading was applied to fibroblast-seeded collagen sponges. Following this, collagen sponge samples and culture supernatants were collected for apoptosis and proliferation assays, gene expression analysis, immunocytochemistry, and quantification of secreted substances induced by upregulation of mRNA and protein level. Compared to the control, the compressed samples demonstrated that apoptosis was induced in a time- and load- dependent manner; vinculin and stress fiber were scarce; HSP90α, CD44, HAS2, and COX2 expression was upregulated; and the concentrations of HSP90α, hyaluronan (HA), and prostaglandin E2 (PGE2) were increased. In addition, the gene expression of antiapoptotic Bcl2 was significantly increased in the compressed samples compared to the control. These results suggest that compressive loading induces not only apoptosis but also survival activity. These observations support that HSP90α, HA, and, PGE2 could be potential molecular markers for prediction of delayed wound healing due to pressure.  相似文献   

20.
Chen L  Tredget EE  Wu PY  Wu Y 《PloS one》2008,3(4):e1886
Bone marrow derived mesenchymal stem cells (BM-MSCs) have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor) cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号