首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Sclerotinia sclerotiorum is a cosmopolitan fungal pathogen causing stem and collar watery soft rot of cauliflower. Previous management of this disease with chemical pesticides caused hazardous results which lead to use of more eco-friendly microbial approaches. In the present study, consortia of Trichoderma harzianum TNHU27 and Pseudomonas aeruginosa PJHU15 were assessed for their ability in controlling Sclerotinia rot in cauliflower. The seedlings of cauliflower were challenged singly and in consortium with these two compatible microbes. The plants were evaluated upon challenge inoculation with S. sclerotiorum for changes in total phenolic content, the activity of defense and antioxidative enzymes. The microbial consortium comprising of T. harzianum and P. aeruginosa significantly enhanced the defense responses of the plant in comparison to pathogen challenged and unchallenged control. The study elucidates that plant beneficial microbes in the consortium may provide superior protection by induction of faster and enhanced defense responses in comparison to unchallenged and single microbe challenged plants under pathogen challenged conditions.  相似文献   

2.
The ability for rhizobacteria and fungus to act as bioprotectants via induced systemic resistance has been demonstrated, and considerable progress has been made in elucidating the mechanisms of plant–biocontrol agent–pathogen interactions. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 from rhizospheric soils were used singly and in consortium and assessed on the basis of their ability to provide disease protection by relating changes in ascorbic acid and hydrogen peroxide (H2O2) production, lipid peroxidation, and antioxidant enzymes in pea under the challenge of Sclerotinia sclerotiorum. Increased production of H2O2 24 h after pathogen challenge was observed and was 254.4 and 231.7–287.7 % higher in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. A similar increase in ascorbic acid content and ascorbate peroxidase activity was observed 24 and 48 h after pathogen challenge, respectively, whereas increased activities of catalase, guaiacol peroxidase, and glutathione peroxidase were observed 72 h after pathogen challenge. Similarly, lipid peroxidation reached a maximum at 72 h of pathogen challenge and was 61.2 and 11.2–32.1 % less in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. These findings suggest that the interaction of microorganisms in the rhizosphere enhanced protection from oxidative stress generated by pathogen attack through induction of antioxidant enzymes and improved reactive oxygen species management.  相似文献   

3.
The study was conducted to examine efficacy of a rhizospheric microbial consortium comprising of a fluorescent Pseudomonas (PHU094), Trichoderma (THU0816) and Rhizobium (RL091) strain on activation of physiological defense responses in chickpea against biotic stress caused by the collar rot pathogen Sclerotium rolfsii. Results of individual microbes were compared with dual and triple strain mixture treatments with reduced microbial load (1/2 and 1/3rd, respectively, of individual microbial load compared to single microbe application) in the mixtures. Periodical studies revealed maximum activities of phenylalanine ammonia lyase [E.C. 4.1.3.5] and polyphenol oxidase [E.C. 1.14.18.1] and accumulation of total phenol content in chickpea in the triple microbe consortium treated plants challenged with the pathogen compared to the single microbe and dual microbial consortia. Similarly, the expression of the antioxidant enzymes superoxide dismutase [E.C.1.15.1.1] and peroxidase [E.C.1.11.1.7] was also highest in the triple microbial consortium which was correlated with lesser lipid peroxidation in chickpea under the biotic stress. Histochemical staining clearly showed maximum and uniform lignification in vascular bundles of chickpea stem sections treated with the triple microbes. The physiological responses were directly correlated with the mortality rate as least plant mortality was recorded in the triple microbe consortium treated plants. The results thus suggest an augmented elicitation of stress response in chickpea under S. rolfsii stress by the triple microbial consortium in a synergistic manner under reduced microbial load.  相似文献   

4.
The aim of this study was to evaluate the potentiality of three compatible rhizosphere microbes, viz. fluorescent Pseudomonas aeruginosa (PHU094), Trichoderma harzianum (THU0816) and Mesorhizobium sp. (RL091), in community to mobilise antioxidant mechanisms in chickpea under the challenge of Sclerotium rolfsii. The microbes were applied as seed treatment in different combinations in two sets and the pathogen was inoculated in one of the sets after 3 weeks of sowing. A comparative study was conducted on the effect of the microbial combinations on host antioxidant mechanisms between the two sets. In pathogen challenged plants host defence responses included higher accumulation of hydrogen peroxide (H2O2) at petiolar and interveinal regions of leaf and high activities of catalase (CAT), glutathione reductase (GR) and guaiacol peroxidase (GPx) compared to unchallenged plants. The antioxidant enzyme activities increased 1.8‐3.3 and 1.9‐3.1 folds at 48 and 72 h, respectively, in the triple microbe treated challenged plants compared to unchallenged ones. Although, ascorbate peroxidase (APX) activity was significantly low, ascorbic acid (AA) and chitinase accumulation was high in the pathogen challenged plants. Antioxidant flavonols associated with host defence namely myricetin, quercetin and kaempferol also accumulated in high amounts in pathogen challenged plants. Among the microbial treatments, the triple microbe combination induced the highest response in all parameters as compared to dual or single application of the same microbes. The triple microbe consortium modulated the chickpea antioxidant mechanisms more efficiently and modulation of oxidative stress was directly correlated with lower plant mortality, thus demonstrating the synergistic behaviour of the microbes in protecting chickpea from the pathogen.  相似文献   

5.
6.
Abstract

Oxalic acid (1 mM) when applied as a foliar spray to rice plants induced resistance to challenge infection with Rhizoctonia solani, the rice sheath blight pathogen. Maximum reduction in sheath blight incidence was observed when the plants were sprayed with oxalic acid three days before inoculation with the fungus. The biochemical alterations in rice plants treated with oxalic acid was also investigated. When rice plants were treated with oxalic acid, a two-fold increase in phenolic content in leaf sheaths was recorded three days after treatment. Phenylalanine ammonia-lyase and peroxidase activities increased significantly starting from two days after treatment. Peroxidase (PO) isozyme analysis indicated that PO-3 and PO-4 were induced two days after treatment with oxalic acid. Western blot analysis revealed that two chitinases (28 and 35 kDa) and two β-1,3-glucanases (30 and 32 kDa) were strongly induced in rice sheaths four to six days after treatment with oxalic acid. Immunoblot analysis of protein extracts from oxalic acid-treated plants demonstrated the induction of a 23 kDa thaumatin-like protein (TLP) cross-reacting with bean TLP antibody. These results suggest that the enhanced activities of defense enzymes and defense-related compounds in oxalic acid-treated rice plants may contribute to resistance against R. solani.  相似文献   

7.
Valeriana jatamansi Jones, an important medicinal herb of the Himalayan region, is an essential source of many therapeutic compounds and is traded/consumed in very high volume. The hypothesis of this study was that different seasons and light conditions may affect the content of medicinally valuable components with changes in the morpho-physiological attributes of the plant. Growing plants under suitable light conditions and harvesting of appropriate plant parts in optimum season is crucial for harnessing the full potential of the crop. Thus, the study was carried out to determine the seasonal response of V. jatamansi plants (genetically identical plants of same age) in terms of growth and phytochemical content under two different light conditions (full sunlight and 50% shade). During all seasons, growth parameters (plant height, leaf number, leaf area, relative water content, plant biomass) and the principle bioactive compounds (valerenic acid) were higher under shade conditions, while total flavonoids, tannins, phenolic compounds and antioxidant activities were higher under full sunlight conditions. HPLC analysis revealed that valerenic acid and most of the phenolic content were higher during summer season, especially in leaf part of the plant. The study suggested harvesting of V. jatamansi plants (especially leaf), during summer season to harness high quality raw material and to prevent loss of belowground parts. This strategy can be adopted by farmers for large scale cultivation of species.Supplementary InformationThe online version of this article contains supplementary material available at 10.1007/s12298-021-00944-0  相似文献   

8.
Abstract

Identification of individual phenolic acids of Sorghum vulgare Pers. cv. M.P. after interaction with Sclerotium rolfsii Sacc. using high performance liquid chromatograph (HPLC) showed the presence of phenolics namely tannic, gallic, ferulic, chlorogenic and cinnamic acids in varying amounts. After 72 h inoculation with S. rolfsii, a maximum amount of ferulic acid (166.6 µg g?1 fresh wt) was present in the collar of inoculated plants, followed by leaves and roots and its level decreased gradually with time. Similarly, the presence of chlorogenic acid was traced after 48 h, while that of cinnamic acid was traced after 72 h of inoculation. Reddish-brown pigmentation at the collar region of inoculated plants was also observed along with the high content of tannic acid. Among other phenolics, the presence of gallic acid was recorded consistently and maximum accumulation (139.3 µg g?1 fresh wt) was noticed at the zone of interaction (collar region) after 72 h of inoculation. In contrast, maximum lignin deposition was observed at collar region after 96 h of inoculation. Induction of phenolic acids in S. vulgare along with the lignin deposition and red pigmentation at collar region is considered a key biomarker in the non-host-pathogen interaction in the S. valgare–S. rolfsii pathosystem.  相似文献   

9.
Aims: To evaluate the potentiality of three rhizosphere microorganisms in suppression of Sclerotinia rot in pea in consortia mode and their impact on host defence responses. Methods and Results: Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 from rhizospheric soils were selected based on compatibility, antagonistic and plant growth promotion activities. The microbes were used as consortia to assess their ability to trigger the phenylpropanoid and antioxidant activities and accumulation of proline, total phenol and pathogenesis‐related (PR) proteins in pea under the challenge of the soft‐rot pathogen Sclerotinia sclerotiorum. The triple‐microbe consortium and single‐microbe treatments showed 1·4–2·3 and 1·1–1·7‐fold increment in defence parameters, respectively, when compared to untreated challenged control. Activation of the phenylpropanoid pathway and accumulation of total phenolics were highest at 48 h, whereas accumulation of proline and PR proteins along with activities of the antioxidant enzymes was highest at 72 h. Conclusions: The compatible microbial consortia triggered defence responses in an enhanced level in pea than the microbes alone and provided better protection against Sclerotinia rot. Significance and Impact of the Study: Rhizosphere microbes in consortium can enhance protection in pea against the soft‐rot pathogen through augmented elicitation of host defence responses.  相似文献   

10.
Changes in the levels of secondary compounds can trigger plant defenses. To identify phenolic compounds induced by Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) in tobacco (Nicotiana tobacco L.), the content changes of 11 phenolic compounds in plants infested by B. tabaci MEAM1 or Trialeurodes vaporariorum were compared. The chlorogenic acid, catechin, caffeic acid, p-coumaric acid, rutin, and ferulic acid contents in B. tabaci MEAM1-infested tobacco plants increased significantly, having temporal and spatial effects, compared with uninfested control and T. vaporariorum infested plants. The contents were 4.10, 2.84, 2.25, 3.81, 1.46, and 1.91 times higher, respectively, than those in the control. However, a T. vaporariorum nymphal infestation just caused smaller chlorogenic acid, catechin, caffeic acid, and rutin contents increase, which were 2.33, 2.13, 1.59, and 3.19 times higher, respectively, than those in the control. In B. tabaci MEAM1 third-instar nymph-infested plants, chlorogenic acid, catechin, caffeic acid, and rutin increased more significantly in systemic than in local leaves. Salicylate-deficient plants inhibited the induction of the content of 10 phenolic compounds, but not caffeic acid, after a B. tabaci MEAM1 nymphal infestation. Thus, the elevated levels of phenolic compounds induced by B. tabaci MEAM1 were correlated with the salicylic acid signaling pathway and induced the responses of defense-related phenolic compounds.  相似文献   

11.
《农业工程》2020,40(3):214-220
The aim of the present study is to assess the antimicrobial activities of various leaf extracts of Ocimum americanum were tested against pathogenic microorganisms. Preparation of different extracts viz., aqueous, acetone, ethyl acetate and methanol through soxhlet extraction method. Various extracts were investigated against MTCC strains of Bacillus cereus, Clostridium penfrigens, Klebsilla pnemoniae, Salmonella paratyphi, Candida albicans and Aspergillus niger by agar well diffusion and disc diffusion methods. Minimum inhibitory concentration (MIC), Minimum Bactericidal/Fungicindal Concentration (MBC/MFC) were determined through micro dilution method. Elucidation of phytochemicals and functional groups were observed by HPLC and FT-IR respectively. Ethyl acetate leaf extract of O.americanum showed significant antimicrobial activity against the all tested pathogens in agar well diffusion method in which B.cereus (17 mm) was observed high zone of inhibition. Whereas lowest inhibition was observed in aqueous extract against C.pentrigens (7 mm). The ranges of MIC values from 0.78 μg/ml to 50 μg/ml and MBC/MFC 1.56 μg/ml to 50 μg/ml were observed. Phytochemicals such as alkaloids, steroids, saponins, flavonoids, tannins, terepenes, phenolic compounds cardiac glycosides were detected. Saponinns, flavonoids, tannins, phenolic compounds were observed in only ethyl acetate leaf extracts. Functional group of the leaf extracts was exhibited by FTIR and HPLC analysis of the ethyl acetate leaf extract was elutated at six peaks. Based on the results we concluded that ethyl acetate leaf extract of O.americanum has proved to be potentially effective than the other extracts. Therefore, ethyl acetate leaf extract of O.americanum could act as antimicrobial agent and further studies are recommended for isolation of compounds and toxicological studies.  相似文献   

12.
Fusarium oxysporum f.sp. cubense (FOC) is a causal agent of vascular wilt and leaf chlorosis of banana plants. Chloroses resulting from FOC occur first in the lowest leaves of banana seedlings and gradually progress upward. To investigate the responses of different leaf positions to FOC infection, hydroponic experiments with FOC inoculation were conducted in a greenhouse. Fusarium-infected seedlings exhibited a decrease in net photosynthesis rate, stomatal conductance, and transpiration rate of all leaves. The wilting process in Fusarium-infected seedlings varied with leaf position. Measurements of the maximum photochemical efficiency of photosystem II (F V/F max) and visualization with transmission electron microscopy showed a positive correlation between chloroplast impairment and severity of disease symptoms. Furthermore, results of malondialdehyde content and relative membrane conductivity measurements demonstrated that the membrane system was damaged in infected leaves. Additionally, the activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were increased and total soluble phenolic compounds were significantly accumulated in the leaves of infected plants. The structural and biochemical changes of infected plants was consistent with plant senescence. As the FOC was not detected in infected leaves, we proposed that the chloroplast and membrane could be damaged by fusaric acid produced by Fusarium. During the infection, fusaric acid was first accumulated in the lower leaves and water-soluble substances in the lower leaves could dramatically enhance fusaric acid production. Taken together, the senescence of infected banana plants was induced by Fusarium infection with fusaric acid production and the composition of different leaf positions largely contribute to the particular senescence process.  相似文献   

13.
Fungal secondary compounds and total extracts are known to affect growth of bacteria, fungi, and plants. This study tested the effects of purified compounds and total extracts from three lichens on the growth of two plant pathogens, Ophiostoma novo-ulmi ssp. americana and Sclerotinia sclerotiorum. Usnic acid showed no reduction in relative growth rates (RGR), whereas vulpinic acid reduced RGR for both fungi and atranorin reduced RGR of S. sclerotiorum only. However, purified vulpinic acid showed stronger effects than total extracts on fungal growth. The results suggest that these lichens show further promise as a source for bioactive compounds against fungi.  相似文献   

14.
The members of the Scabiosa genus are one of the traditional medicinal plants used in the treatment of many diseases, in particular the treatment of scabies. In this study, it was aimed to determine antioxidant activities and chemical composition of methanolic extracts of leaves and flowers of Scabiosa columbaria subsp. columbaria var. columbaria. The phenolic contents of both parts of the plant were analyzed by LC–MS/MS. A total of 6 phenolic compounds were determined and chlorogenic acid was the major compound in both flower and leaf parts of the plants, with 5936.052 µg/g and 8021.666 µg/g, respectively. 6 different methods were used to determine the antioxidant activity of the plant parts. Both leaf and flower parts of the plant showed high antioxidant activity in all tested methods and the antioxidant activity values of the leaf part were measured higher than those of the flower part for four tests. The methanol extracts of the plant parts was analyzed with GC–MS and number of the essential oil compounds in the leaf and flower parts were determined as 17 and 13, respectively. Linalool compound was also found to be common in both parts of the plant. The major compounds of the essential oils were identified as 4-Octadecenal (30.01%) in the flower and carvone (35.44%) in the leaf. In addition, terpene derivatives was determined as 90.32% of the highest essential oil group in the leaf, while this value was determined as 1.42% in the flower. For the flower, aromatics were determined as the main component group with 21.31%.  相似文献   

15.
Ultraviolet-B radiation (UVBR) affects plants in many important ways, including reduction of growth rate and primary productivity, and changes in ultrastructures. Rice (Oryza sativa) is one of the most cultivated cereals in the world, along with corn and wheat, representing over 50 % of agricultural production. In this study, we examined O. sativa plants exposed to ambient outdoor radiation and laboratory-controlled photosynthetically active radiation (PAR) and PAR + UVBR conditions for 2 h/day during 30 days of cultivation. The samples were studied for morphological and ultrastructural characteristics, and physiological parameters. PAR + UVBR caused changes in the ultrastructure of leaf of O. sativa and leaf morphology (leaf index, leaf area and specific leaf area, trichomes, and papillae), plant biomass (dry and fresh weight), photosynthetic pigments, phenolic compounds, and protein content. As a photoprotective acclimation strategy against PAR + UVBR damage, an increase of 66.24 % in phenolic compounds was observed. Furthermore, PAR + UVBR treatment altering the levels of chlorophylls a and b, and total chlorophyll. In addition, total carotenoid contents decreased after PAR + UVBR treatment. The results strongly suggested that PAR + UVBR negatively affects the ultrastructure, morphology, photosynthetic pigments, and growth rates of leaf of O. sativa and, in the long term, it could affect the viability of this economically important plant.  相似文献   

16.
Qualitative and quantitative estimation of phenolic compounds was done through high performance liquid chromatography (HPLC) in different parts of pea (Pisum sativum) after treatment with two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens (strain Pf4) and Pseudomonas aeruginosa (referred to here as Pag) and infection by Erysiphe pisi. The phenolic compounds detected were tannic, gallic, ferulic, and cinnamic acids on the basis of their retention time in HPLC. In all the treated plants, synthesis of phenolic compounds was enhanced. The induction of gallic, ferulic, and cinnamic acids was manyfold more than those in the control. Maximum accumulation of phenolic compounds was observed in plants raised from PGPR-treated seeds and infection with E. pisi. Under pathogenic stress, Pag performed better because a relatively higher amount of phenolics was induced compared with plants treated with Pf4. Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

17.
Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44–62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56–71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.  相似文献   

18.
Goji (Lycium barbarum L.) leaves are emphasized as a functional tea or as dietary supplements. The phenolic compound profile, antioxidant, enzyme inhibitory, antimicrobial, and antimutagenic activities of leaf extracts from two selected cultivars in comparison with wild-growing plants have been evaluated. HPLC-DAD/ESI-ToF-MS analysis revealed the presence of phenolic acids and flavonoids with chlorogenic acid and rutin being the dominant compounds in the cultivated plants, whereas rutin and kaempeferol-3-O-rutinoside for wild growing ones. In particular, cv. Erma contained the highest amount of chlorogenic acid and showed a strong tyrosinase-inhibitory effect. Staphylococcus aureus, Listeria monocytogenes, and Penicillium funiculosum were the most sensitive strains when exposed to extracts from cultivated plants. Antimutagenic activity was evaluated by Ames' test. The tested extracts provided high protection against mutagenicity induced by 2-anthramine (2-AA) to Salmonella typhimurium strains TA 98 and TA 100 (max. inhibition (%) 88% and 74.2%, respectively). Overall, Goji leaves are a rich source of bioactive compounds with functional properties that need further risk/benefit evaluation when used in foods or health-promoting formulations.  相似文献   

19.
Direct differentiation of shoot buds in Coffea dewevrei was evident from the seedling shoots with collar region and also from collar region end of hypocotyl segments in presence of 40 μM AgNO3, 8.88 μM of BA and 2.85 μM of IAA. Apart from this, shoot end of hypocotyl explants mainly supported yellow friable callus or somatic embryos. Subsequent transfer to the same medium induced secondary somatic embryogenesis. The collar region of the hypocotyl explants not only showed direct organogenesis by producing 1–3 shoots per explant and also able to produce globular somatic embryos and embryogenic yellow friable callus. Similarly direct somatic embryogenesis along with yellow friable embryogenic callus formation on 1/2 strength MS medium comprising 1.47 μM IAA, 2.22 μM BA and 40 μM AgNO3 was noticed from cut portion of in vitro leaf and stalk of regenerated plants. The microshoots rooted well upon subculturing onto the same medium in 6 weeks and showed 60 % survival in green house and resumed growth upon hardening.  相似文献   

20.
Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae, Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. (Lamiaceae), Calendula officinalis L. (Asteraceae) and for Potentilla recta L. (Rosaceae). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae – in the range from 0.782 to 5.078 mg g?1 DW. The representative’s family Rosaceae has a higher content of p-anisic acid in the range 0.334–3.442 mg g?1DW compared to the leaf extracts of families Lamiaceae and Asteraceae. The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative’s families Rosaceae, Asteraceae and Lamiaceae. We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae. It was supposed that some pharmacological effects can be connected with the analyzed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号