首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu L  Cai C  Wang X  Liu M  Li X  Tang H 《FEBS letters》2011,585(9):1322-1330
RAC1 regulates a diverse array of cellular events including migration and invasion. MicroRNAs (miRNAs) have a key role in the regulation of gene expression. In this study, we demonstrated that microRNA-142-3p (miR-142-3p) acted as a negative regulator of human RAC1. Overexpression of miR-142-3p decreased RAC1 mRNA and protein levels. Moreover, the overexpression of miR-142-3p suppressed, while blocking of miR-142-3p increased colony formation, migration and invasion in hepatocellular carcinoma (HCC) cell lines (QGY-7703 and SMMC-7721). RAC1 overexpression without the 3'untranslated region abolished the effect of miR-142-3p in the QGY-7703 and SMMC-7721 cells. These results demonstrated that miR-142-3p directly and negatively regulates RAC1 in HCC cells, which highlights the importance of miRNAs in tumorigenesis.  相似文献   

2.
MicroRNAs plays an important role in the ccurrence and development of non–small-cell lung cancer (NSCLC). miR-497-5p has been reported to function as a tumor suppressor in various cancers. However, the role of miR-497-5p in NSCLC remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of miR-497-5p in NSCLC. Our results showed that the messenger RNA (mRNA) expression level of miR-497-5p was notably downregulated in human NSCLC tissues and cell lines. miR-497-5p overexpression remarkably inhibited NSCLC cell proliferation and increased cell apoptosis in A549 and H460 cells, whereas inhibition of miR-497-5p had an opposite effect. The ability of cell migration and invasion was inhibited by miR-497-5p overexpression but was increased by miR-497-5p inhibition. Moreover, our findings indicated that SOX5 was a direct target of miR-497-5p. The protein and mRNA expression levels of SOX5 in A549 cells were remarkably inhibited by miR-497-5p overexpression but was upregulated by miR-497-5p inhibition. Furthermore, SOX5 overexpression notably reversed the effect of miR-497-5p mimic on NSCLC cell proliferation, cell apoptosis, cell migration, and invasion. Taken together, these results indicated that miR-497-5p overexpression inhibited NSCLC cell proliferation, migration and invasion, and induced cell apoptosis through inhibiting SOX5 gene expression. It was conceivable that miR-497-5p might serve as a potential molecular target for NSCLC treatment.  相似文献   

3.
4.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

5.
目的:探讨长链非编码RNA(lncRNA) UNC5B-AS1调控miR-218-5p的表达影响肺癌细胞黏附、侵袭和迁移及其作用机制。方法:选取2017年6月至2019年6月在重庆三峡中心医院肿瘤科经手术切除的20例肺癌患者癌组织和对应癌旁组织标本,采用实时荧光定量PCR(qRT-PCR)检测肺癌组织和癌旁组织及其支气管上皮细胞HBE和不同肺癌细胞A549、H1437、H1975、H1299和H460中UNC5B-AS1的表达。将UNC5B-AS1 siRNA转染至肺癌A549细胞,采用黏附实验、Transwell侵袭实验及划痕实验检测下调UNC5B-AS1对A549细胞黏附、侵袭和迁移能力的影响; qRT-PCR和双荧光素酶报告基因检测实验鉴定UNC5B-AS1对miR-218-5p的靶向调控关系; Western blot检测上皮间质转化(EMT)相关蛋白表达情况。结果:肺癌组织和细胞中UNC5B-AS1表达显著高于癌旁组织和支气管上皮细胞(P<0.05),UNC5B-AS1在肺癌A549细胞中的表达量最高(P<0.05)。下调UNC5B-AS1的表达能够抑制A549细...  相似文献   

6.
This study aimed to explore the underlying mechanism of miR-513b and HMGB3 in regulating non-small-cell lung cancer (NSCLC). NSCLC tumor, adjacent tissues, and cell lines were extracted, and the expression of miR-513b and HMGB3 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis. Then, miR-513b was overexpressed in NSCLC cell, and the proliferation, migration, invasion, and apoptosis of cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), wound healing, transwell, and flow cytometry, respectively. Regulatory relationship between miR-513b and HMGB3 was determined using luciferase activity reporter assay. Lastly, HMGB3 and/or miR-513b were overexpressed in NSCLC cells, and the proliferation, migration, invasion, and apoptosis of cells were determined. Compared with the controls, the expression of miR-513b was significantly downregulated in the NSCLC tissues and cells lines by RT-qPCR ( p < 0.05). However, the expression of HMGB3 was significantly downregulated at both messenger RNA and protein levels ( p < 0.05). Overexpression of miR-513b could significantly inhibit the proliferation, invasion, migration, and promote apoptosis of NSCLC cells ( p < 0.05). HMGB3 was a target of miR-513b, and overexpression of HMGB3 could obviously reverse the effect of miR-513 on the proliferation, invasion, migration, and apoptosis of NSCLC cells ( p < 0.05). The present results could suggest miR-513b was downregulated in NSCLC and could regulate the proliferation, invasion, migration, and apoptosis of NSCLC cells via HMGB3.  相似文献   

7.
目的:通过体外实验探讨miR-575对非小细胞肺癌(NSCLC)细胞增殖与侵袭能力的影响及相关机制。方法:采用实时定量PCR法检测不同非小细胞肺癌细胞系中miR-575、BLID的表达;CCK-8法检测转染miR-575模拟物、抑制因子后不同时间A549细胞增殖情况的变化;Transwell法检测A549细胞的侵袭情况;Targetcan法及双荧光素酶检测miR-575对BLID 3'UTR端的靶向作用;Western blot法检测BLID蛋白的表达。结果:A549、SPC-A1、H1299、H1650等人非小细胞肺癌细胞系中miR-575的表达均显著高于永生化的人支气管上皮细胞系16HBE(P0.001)。MiR-575模拟物转染的A549细胞miR-575的表达明显高于对照组(P0.001),同时细胞的增殖和侵袭力增强(P0.05);反之,miR-575抑制因子转染的A549细胞miR-575的表达显著降低,且细胞的增殖和侵袭力明显降低(P0.01)。Targetscan法预测BLID可能是miR-575的下游靶基因,荧光素酶结果显示miR-575不仅能够有效抑制野生型BLID 3'UTR端的荧光素酶反应(P0.01),而且能够降低BLID的蛋白表达量(P0.01)。实时定量PCR结果显示BLID在NSCLC细胞系中均呈现显著的低表达(P0.001),且转染BLID后,NSCLC细胞的增殖和细胞侵袭被明显抑制(P0.05),而当miR-575与BLID共转染时,miR-575能够逆转BLID所抑制的细胞增殖和侵袭(P0.01)。结论:在NSCLC细胞系中,miR-575的表达上调,且能够通过直接作用于下游靶点抑癌基因BLID从而促非小细胞肺癌细胞增殖及侵袭。  相似文献   

8.
9.
Distant metastasis is the main cause of death in non-small cell lung cancer (NSCLC) patients. The mechanism of metastasis-associated protein 1(MTA1) in NSCLC has not been fully elucidated. This study aimed to reveal the mechanism of MTA1 in the invasion and metastasis of NSCLC.Bioinformatics analysis and our previous results showed that MTA1 was highly expressed in NSCLC tissues and correlated with tumor progression. Knockout of MTA1 by CRISPR/Cas9 significantly inhibited the migration and invasion of H1299 cells, but enhanced cell adhesion. Stable overexpression of MTA1 by lentivirus transfection had opposite effects on migration, invasion and adhesion of A549 cells. The results of in vivo experiments in nude mouse lung metastases model confirmed the promotion of MTA1 on invasion and migration. Tight junction protein 1 (TJP1) was identified by immunoprecipitation and mass spectrometry as an interacting protein of MTA1 involved in cell adhesion. MTA1 inhibited the expression level of TJP1 protein and weakened the tight junctions between cells. More importantly, the rescue assays confirmed that the regulation of MTA1 on cell adhesion, migration and invasion was partially attenuated by TJP1.In Conclusion, MTA1 inhibits the expression level of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells, weakens the tight junctions between cells, and changes the adhesion, migration and invasion capabilities of cells, which may be the mechanism of MTA1 promoting the invasion and metastasis of NSCLC. Thus, targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.  相似文献   

10.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

11.
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a tumour suppressor, however, the roles of AIMP3 in non-small cell lung cancer (NSCLC) are not explored yet. Here, we reported that AIMP3 significantly inhibited the cell growth and metastasis of NSCLC (lung adenocarcinoma) in vitro and in vivo. We have firstly identified that AIMP3 was down-regulated in human NSCLC tissues compared with adjacent normal lung tissues using immunohistochemistry and western blot assays. Overexpression of AIMP3 markedly suppressed the proliferation and migration of cancer cells in a p53-dependent manner. Furthermore, we observed that AIMP3 significantly suppressed tumour growth and metastasis of A549 cells in xenograft nude mice. Mechanically, we identified that AIMP3 was a direct target of miR-96-5p, and we also observed that there was a negative correlation between AIMP3 and miR-96-5p expression in paired NSCLC clinic samples. Ectopic miR-96-5p expression promoted the proliferation and migration of cancer cells in vitro and tumour growth and metastasis in vivo which partially depended on AIMP3. Taken together, our results demonstrated that the axis of miR-96-5p-AIMP3-p53 played an important role in lung adenocarcinoma, which may provide a new strategy for the diagnosis and treatment of NSCLC.  相似文献   

12.
BackgroundLung cancer is responsible for the majority of cancer deaths in the world. We found a significant increase of STAMBPL1 expression in lung adenocarcinoma (LUAD) tissues and cells. However, its mechanism has not been clarified.MethodsLUAD tissues and adjacent normal tissues were collected from 62 patients treated in the First Affiliated Hospital of Wenzhou Medical University from August 2018 to August 2021. In vivo, the clinical data and STAMBPL1 expression of 62 patients with LUAD were analyzed by qPCR. In vitro, cell experiments were carried out after STAMBPL1 knockdown in A549 and H1299 cells to determine cell growth, migration rate, evasiveness, colony-forming ability, and apoptosis. Gene sequencing was used to explore the expression of various genes in A549 and H1299 cells to verify that DHRS2 was up-regulated after STAMBPL1 knockdown; cell experiments further detected the role of the DHRS2 gene after DHRS2 overexpression in A549 and H1299 cells. A rescue experiment was conducted to certify that STAMBPL1 promotes NSCLC progression by regulating DHRS2 expression.ResultsAfter STAMBPL1 knockdown by siRNA. Migration, invasion, colony formation, and proliferation of siRNA groups were suppressed than those of NC groups in A549 and H1299 cells, while the cell apoptosis rate of siRNA groups increased significantly. By using gene-sequence analysis, we found that the expression level of the DHRS2 gene was up-regulated in STAMBPL1 siRNA groups, compared with STAMBPL1 NC (negative control) groups in A549 and H1299, which was verified by qPCR and WB. Further experiments showed that the DHRS2 OE group was suppressed in cell proliferation, migration, and invasion in the A549 and H1299 cell lines compared to the DHRS2 NC group, while DHRS2 OE group was significantly enhanced in the cell apoptosis in the A549 and H1299 cell lines. According to the rescue experiment, cell proliferation, migration, and invasion of the STAMBPL1 SI+DHRS2 SI group were enhanced compared with the STAMBPL1 SI+DHRS2 NC group in A549 and H1299 cells, while the STAMBPL1 SI+DHRS2 OE group were further decreased.ConclusionsThe expression of STAMBPL1 mRNA is significantly up-regulated in LUAD, promoting the progression of LUAD by down-regulating the expression of DHRS2 and acting as a potential biomarker of LUAD.  相似文献   

13.
14.
MiRNA-5195-3p (miR-5195-3p), a recently discovered and poorly studied miRNA, has been reported to suppress bladder cancer cell behavior. However, its regulatory role in non-small cell lung cancer (NSCLC) remains unclear. Here, the expression of miR-5195-3p was found to be reduced in NSCLC tissues and cells. The in vitro experiments showed that miR-5195-3p upregulation repressed cell proliferation, migration and invasion by CCK-8 and transwell assays. In addition, MYO6 was predicted and confirmed as a potential target of miR-5195-3p by Bioinformatics analysis, Luciferase reporter assay and western blot analysis. There was significantly negative correlation between miR-5195-3p and MYO6 in NSCLC tissues. Furthermore, MYO6 knockdown exhibited similar effects to those of miR-5195-3p overexpression in NSCLC cells, and restored MYO6 expression reversed the inhibitory effects of miR-5195-3p. Therefore, these results demonstrate that miR-5195-3p functions as a tumor suppressor by directly modulating MYO6 expression in NSCLC cells, and may be an innovative candidate target for NSCLC therapy.  相似文献   

15.
MicroRNA-125a (miR-125a) is related to the occurrence, development, and prognosis of various cancers according to relevant reports. However, its function role and mechanism in non–small cell lung cancer (NSCLC) is yet to be explored. Herein, we investigated the role and preliminary mechanism of miR-125a in NSCLC. First, miR-125a was noticeably downregulated in NSCLC tissues in contrast to adjacent normal tissues through the real-time quantitative polymerase chain reaction (RT-qPCR) assay. The inverted result was observed on the STAT3 and HAS1 expressions. Moreover, miR-125a was expressed at highest level in A549 among four human NSCLC cell lines. Second, functional studies indicated miR-125a restrained proliferation, invasion, migration, metastasis, and advocated apoptosis of NSCLC cells, but had no obvious effect on cell cycle. Next, results indicated that a target of miR-125a was STAT3 on the basis of prediction and confirmation by the dual-luciferase reporter assay. RT-qPCR and Western blot assays displayed that miR-125a overexpression conspicuously constrained STAT3 expression at messenger RNA and protein levels. Finally, the binding between HAS1 promoter region and STAT3 was predicted by PROMO database analysis and verified by chromatin immunoprecipitation assay, suggesting that STAT3 was bound with the HAS1 promoter regions. STAT3 overexpression exerted positive effects on HAS1 expression at protein and mRNA levels. Additionally, HAS1-related functional studies illustrated HAS1 pronouncedly suppressed the proliferative, invasive, and migratory potential of NSCLC cells in vitro. Collectively, our findings demonstrated that miR-125a prohibited the proliferation, invasion, and migration of NSCLC cells by HAS1 expression reduction as a result of inhibiting STAT3 expression in NSCLC. This study indicated that miR-125a might be of potential or value for NSCLC treatment.  相似文献   

16.
17.
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown.Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development.Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay.Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression.Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.  相似文献   

18.
The tumor-suppressing role of miR-455-3p has been reported in lung cancer, but the working mechanism remains to be fully elucidated. This study aims to explore the possible mechanism of miR-455-3p in regulating epithelial–mesenchymal transition (EMT) progression and angiogenesis in non-small cell lung cancer (NSCLC) cells.The expressions of miR-455-3p, HSF1, GLS1, and EMT-related proteins (E-cadherin, N-cadherin, vimentin, and Snail-1) in both NSCLC tissues and cell lines were determined by RT-qPCR and western blot. After cell transfection, cell proliferation and angiogenesis ability on NSCLC cells were assessed by MTT and tube formation assay. The binding of miR-455-3p with HSF1 was measured by luciferase reporter gene assay, while the interaction between HSF1 and GLS1 was determined by co-immunoprecipitation assay (Co-IP).HSF1 was highly expressed in NSCLC tissues and cells. Inhibition of HSF1 expression or overexpression of miR-455-3p in NSCLC cells can suppress cell proliferation, angiogenesis ability, and EMT progression. miR-455-3p was found to negatively regulate HSF1 expression. Co-transfection of miR-455-3p overexpression and HSF1 inhibition in NSCLC cells showed that miR-455-3p can partially counteract the effect of HSF1 in NSCLC cells. HSF1 can interact with GLS1 and elevate the expression of GLS1. GLS1 can partially abolish the suppressive effect of miR-455-3p in NSCLC cells.miR-455-3p can bind HSF1 to suppress the GLS1 in NSCLC cells, therefore suppressing EMT progression and angiogenesis of NSCLC cells.  相似文献   

19.
20.
Reduced connexin expression and loss of gap junction function is a characteristic of many cancers, including lung cancer. However, there are little reports about the relation between Cx31.1 and lung cancer. This study was conducted to investigate the effect of Cx31.1 on non-small cell lung cancer (NSCLC). We found that the Cx31.1 was down-regulated in NSCLC cell lines, and the expression levels were reversely related with their metastatic potential. We ectopically expressed Cx31.1 in H1299 NSCLC cell line to examine the influence of Cx31.1 overexpression. The results showed that overexpression of Cx31.1 in H1299 cells reduced cell proliferation, induced a delay in the G(1) phase, inhibited anchorage-independent growth and suppressed cell migration and invasion. The cell cycle delay and cell migration and invasion suppressive effects of Cx31.1 were partially reversed by siRNA targeting mRNA of Cx31.1. Moreover, xenografts of Cx31.1 overexpressing H1299 cells showed reduced tumourigenicity. These results suggested that Cx31.1 has tumour-suppressive properties. Further investigation indicated that cyclin D3 may be responsible for Cx31.1-induced G(1) phase delay. Importantly, Cx31.1 increased the expression of epithelial markers, such as cytokeratin 18, and decreased expression of mesenchymal markers, such as vimentin, indicating a Cx31.1-mediated partial shift from a mesenchymal towards an epithelial phenotype. We concluded that Cx31.1 inhibit the malignant properties of NSCLC cell lines, the mechanisms under this may include regulation of EMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号