首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lung cancer has the highest mortality rate among human cancers, and the majority of deaths can be attributed to metastatic spread. Lung cancer stem cells (CSCs) are a component of the tumour microenvironment that contributes to this process. Exosomes are small membrane vesicles secreted by all types of cells that mediate cell interactions, including cancer metastasis. Here, we show that lung CSC-derived exosomes promote the migration and invasion of lung cancer cells, up-regulate expression levels of N-cadherin, vimentin, MMP-9 and MMP-1, and down-regulate E-cadherin expression. Moreover, we verified that these exosomes contribute to a pro-metastatic phenotype in lung cancer cells via miR-210-3p transfer. The results of bioinformatics analysis and dual-luciferase reporter assays further indicated that miR-210-3p may bind to fibroblast growth factor receptor-like 1 (FGFRL1); silencing FGFRL1 enhanced the metastatic ability of lung cancer cells, whereas overexpressing FGFRL1 suppressed metastasis. Taken together, our results provide new insights into a potential molecular mechanism whereby lung CSC-derived exosomal miR-210-3p targets FGFRL1 to promote lung cancer metastasis. FGFRL1 may be a promising therapeutic target in lung cancer.  相似文献   

2.
3.
4.
Preeclampsia (PE) is the leading cause of maternal and perinatal mortality and morbidity. Understanding the molecular mechanisms underlying placentation facilitates the development of better intervention of this disease. MicroRNAs are strongly implicated in the pathogenesis of this syndrome. In current study, we found that miR-125b-1-3p was elevated in placentas derived from preeclampsia patients. Transfection of miR-125b-1-3p mimics significantly inhibited the invasiveness of human trophoblast cells, whereas miR-125b-1-3p inhibitor enhanced trophoblast cell invasion. Luciferase assays identified that S1PR1 was a novel direct target of miR-125b-1-3p in the placenta. Overexpression of S1PR1 could reverse the inhibitory effect of miR-125b-1-3p on the invasion of trophoblast cells. These findings suggested that abnormal expression of miR-125b-1-3p might contribute to the pathogenesis of preeclampsia.  相似文献   

5.
MicroRNAs (miRNAs) play critical roles in cancer pathobiology, acting as regulators of gene expression and pivotal drivers of tumorigenesis. It is believed that miRNAs act through canonical mechanisms, involving the binding of mature miRNAs to target messenger RNAs (mRNAs) and subsequent repression of protein translation or degradation of target mRNAs. miR-142-3p/5p has been extensively studied and established as a key regulator in various malignancies. Recent discoveries have revealed miR-142-3p/5p serve as either oncogene or tumor suppressor in cancer. By targeting epigenetic factor and cancer-related signaling pathway, miR-142-3p/5p can regulate wide range of downstream genes. The immune modulatory role of miR-142-3p/5p has been shown in various cancers, which provides significant insight into immunosuppression and tumor escape from the immune response. Exosomes with miR-142-3p/5p facilitate cell communication and can affect cancer cell behavior, offering potential therapeutic, and diagnosis applications in cancer therapy. In this review, for the first time, we comprehensively summarize the current knowledge regarding mentioned functions of miR-142-3p/5p in cancer pathobiology.  相似文献   

6.
Long noncoding RNAs (lncRNAs) exert key regulators in cancer development and progression. The functional significance of lncRNA small nucleolar RNA host gene 20 (SNHG20) was reported in gastric cancer (GC); however, the underlying molecular mechanism in GC development is largely unknown. Here, our results showed that the lncRNA SNHG20 expression was significantly higher in GC tissues compared with adjacent normal tissues by quantitative real-time PCR (qRT-PCR) analysis. Higher lncRNA SNHG20 expression was highly associated with tumor size and lymphatic metastasis of patients. Patients with higher lncRNA SNHG20 expression predicted a short disease-free survival (DFS) and overall survival (OS). Furthermore, lncRNA SNHG20 expression negatively associated with miR-495-3p expression and regulated miR-495-3p expression. Function assays confirmed that lncRNA SNHG20 knockdown using RNA interference suppressed cell proliferation and invasion of GC by negatively regulating miR-495-3p expression. Moreover, we demonstrated that lncRNA SNHG20 inhibited zinc finger protein X-linked (ZFX) expression by negatively miR-495-3p expression in GC cells. In vivo, the current study also indicated that lncRNA SNHG20 knockdown reduced the tumor growth by downregulating ZFX expression. Thus, our results implied that inhibition of SNHG20/miR-495-3p/ZFX axis may provide valuable target for GC treatment.  相似文献   

7.
Death associated protein kinase 1 (DAPK1) was initially discovered in the progress of gamma-interferon induced programmed cell death, it is a key factor in the central nervous system, including Parkinson's disease (PD). However, the underlying mechanisms of DAPK1 in PD remain unclear and this research work aims to explore the potential mechanisms of DAPK1 in PD. In the study, we exposed SH-SY5Y cells to MPP+ and treated mice with MPTP to investigate the roles of DAPK1 in PD and the underlying mechanisms. The results indicated that the expression of DAPK1 is significantly upregulated and negatively correlated with miR-124-3p levels in SH-SY5Y cells treated by MPP+, and miR-124-3p mimics could effectively inhibit DAPK1 expressions and alleviate MPP+-induced cell apoptosis. In addition, knockdown MALAT1 reduces the levels of DAPK1 and the ratio of SH-SY5Y cell apoptosis, which is reversed via miR-124-3p inhibitor in vitro. Similarly, knockdown MALAT1 could improve behavioral changes and reduce apoptosis by miR-124-3p upregulation and DAPK1 downregulation in MPTP induced PD mice. Taken together, our data showed that lncRNA MALAT1 positively regulates DAPK1 expression by targeting miR-124-3p, and mediates cell apoptosis and motor disorders in PD. In summary, these results suggest that MALAT1/miR-124-3p /DAPK1 signaling cascade mediates cell apoptosis in vitro and in vivo, which may provide experimental evidence of developing potential therapeutic strategies for PD.  相似文献   

8.
Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.  相似文献   

9.
10.
11.
MicroRNA-142-3p (miR-142-3p) was previously investigated in various cancers, whereas, it's role in breast cancer (BC) remains far from understood. In this study, we found that miR-142-3p was markedly decreased both in cell lines and BC tumor tissues. Elevated miR-142-3p expression suppressed growth and metastasis of BC cell lines via gain-of-function assay in vitro and in vivo. Mechanistically, miR-142-3p could regulate the ras-related C3 botulinum toxin substrate 1 (RAC1) expression in protein level, which simultaneously suppressed the epithelial-to-mesenchymal transition related protein levels and the activity of PAK1 phosphorylation, respectively. In addition, rescue experiments revealed RAC1 overexpression could reverse tumor-suppressive role of miR-142-3p. Our results showed miR-142-3p could function as a tumor suppressor via targeting RAC1/PAK1 pathway in BC, suggesting a potent therapeutic target for BC treatment.  相似文献   

12.
Gastric cancer (GC) is a worldwide health problem. Uncovering the underlining molecular mechanisms of GC is of vital significance. Here, we identified a novel oncogene WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) in GC. WWP1 could promote GC cell proliferation and migration in vitro and expedite GC growth in vivo. We also found out two microRNAs (miRNAs): miR-129-5p and -3p could both target WWP1. Interestingly, miR-129-5p bound to the CDS region of WWP1 mRNA. The miR-129 pairs (miR-129-5p and -3p) play pivotal roles in GC to suppress its proliferation and migration in vitro and slow down GC growth in vivo by repressing WWP1. In summary, we identified two tumor suppressive miRNAs which share the same precursor that could regulate the same oncogene WWP1 in GC. Our finding would add new route for GC research and treatment.  相似文献   

13.
MicroRNAs play important roles in the development and progression of non-small cell lung cancer (NSCLC). miR-16 functions as a tumor-suppressor and is inhibited in several malignancies. Herein, we validated that miR-16 is downregulated in NSCLC tissue samples and cell lines. Ectopic expression of miR-16 significantly inhibited cell proliferation and colony formation. Moreover, miR-16 suppressed cell migration and invasion in NSCLC cells. Hepatoma-derived growth factor (HDGF) was found to be a direct target of miR-16 in NSCLC cell lines. Rescue experiments showed that the suppressive effect of miR-16 on cell proliferation, colony formation, migration, and invasion is partially mediated by inhibiting HDGF expression. This study indicates that miR-16 might be associated with NSCLC progression, and suggests an essential role for miR-16 in NSCLC.  相似文献   

14.
15.
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.  相似文献   

16.
17.
18.
19.
Prostate cancer is the second most common cancer in men worldwide. This study focused to clarify the roles of Metadherin (MTDH) and miR-342-3p in prostate cancer. We identified that MTDH was up-regulated and miR-342-3p was down-regulated in the prostate tissues, and there is an inverse correlation between MTDH and miR-342-3p. Functional studies revealed that miR-342-3p directly targets MTDH via binding to the 3′ untranslated regions (UTRs) in the prostate cancer cells. Moreover, we also found MTDH overexpression in DU145 and PC3 cells inhibited apoptosis. Subsequently, miR-342-3p has been revealed to reverse the MTDH effect on the cellular apoptosis in the further studies. Our results indicate that MTDH repress apoptosis of prostate cancer in vitro and provides a new strategy for human prostate cancer therapy in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号