首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27Kip1 stability, and that COP1 is a negative regulator of p27Kip1. Ectopic expression of CSN6 can decrease the expression of p27Kip1, while CSN6 knockdown leads to p27Kip1 stabilization. Mechanistic studies show that CSN6 interacts with p27Kip1 and facilitates ubiquitin-mediated degradation of p27Kip1. CSN6-mediated p27 degradation depends on the nuclear export of p27Kip1, which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.  相似文献   

2.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

3.
Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated “model protein” p27Kip1. A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27Kip1 content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27Kip1. UCH-L1 enhanced cytoplasmic p27Kip1 levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27Kip1. In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27Kip1 in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27Kip1 in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN.  相似文献   

4.
The cyclin-dependent kinase inhibitor p27Kip1 (p27) is a major gatekeeper of the mammalian cell cycle progression known to be regulated by both, its subcellular localization and its degradation. To allow entrance into S phase and thereby mammalian cell cycle progression p27 must be degraded by a skp2-containing E3 ubiquitin ligase whose task is to target p27 for degradation by the proteasome. The tumor suppressor gene product tuberin directly binds to p27 and protects it from degradation via skp2. Whereas, p27 and tuberin are known to be localized to both, the cytoplasm and the nucleus, the localization of skp2 remained elusive. Here we demonstrate that skp2 is a cytoplasmic and nuclear protein. In addition we found an inverse correlation of the endogenous protein levels of skp2 with p27 and tuberin in different transformed cells and under different growth conditions. These data allow new important insights into this molecular network of cell cycle control.  相似文献   

5.
The cyclin-dependent kinase inhibitor p27(Kip1) is degraded at the G0-G1 transition of the cell cycle by the ubiquitin-proteasome pathway. Although the nuclear ubiquitin ligase (E3) SCF(Skp2) is implicated in p27(Kip1) degradation, proteolysis of p27(Kip1) at the G0-G1 transition proceeds normally in Skp2(-/-) cells. Moreover, p27(Kip1) is exported from the nucleus to the cytoplasm at G0-G1 (refs 9-11). These data suggest the existence of a Skp2-independent pathway for the degradation of p27(Kip1) at G1 phase. We now describe a previously unidentified E3 complex: KPC (Kip1 ubiquitination-promoting complex), consisting of KPC1 and KPC2. KPC1 contains a RING-finger domain, and KPC2 contains a ubiquitin-like domain and two ubiquitin-associated domains. KPC interacts with and ubiquitinates p27(Kip1) and is localized to the cytoplasm. Overexpression of KPC promoted the degradation of p27(Kip1), whereas a dominant-negative mutant of KPC1 delayed p27(Kip1) degradation. The nuclear export of p27(Kip1) by CRM1 seems to be necessary for KPC-mediated proteolysis. Depletion of KPC1 by RNA interference also inhibited p27(Kip1) degradation. KPC thus probably controls degradation of p27(Kip1) in G1 phase after export of the latter from the nucleus.  相似文献   

6.
Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27Kip1. We generated a p27Kip1-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27Kip1-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27Kip1 turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.  相似文献   

7.
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.  相似文献   

8.
9.
Psoriasis, a chronic immune-mediated inflammatory skin disease, is characterized by dysregulated keratinocyte proliferation. The EF-hand calcium binding protein S100A7 has been found to be overexpressed in psoriatic keratinocytes. It is know that S100A7 may interact with Jab1, a cofactor that stabilizes c-Jun. Jab1 is known to downregulate the expression of the cell cycle inhibitor p27Kip1 in some cancer models. In this study, we aimed to investigate the possible interaction between S100A7 and Jab1 and the downstream effects on p27 Kip1 expression in normal human keratinocyte cells transfected with S100A7 CRISPR activation plasmid and in archival psoriatic skin samples. Our results showed that the upregulated S100A7 colocalizes with Jab1 at the nuclear level in transfected cells and psoriatic skin samples. We also showed a differential protein expression of Jab1 between cytoplasmic and nuclear compartments, thus suggesting Jab1 translocation from nucleus to cytoplasm. p27 Kip1 protein expression patterns would imply a translocation from nucleus and a subsequent degradation of this protein. The upregulation of S1007 and its interaction with Jab1 would contribute to the p27 Kip1-dependent impaired proliferation that characterizes psoriatic skin.  相似文献   

10.
The Pim-1 protein kinase plays an important role in regulating both cell growth and survival and enhancing transformation by multiple oncogenes. The ability of Pim-1 to regulate cell growth is mediated, in part, by the capacity of this protein kinase to control the levels of the p27, a protein that is a critical regulator of cyclin-dependent kinases that mediate cell cycle progression. To understand how Pim-1 is capable of regulating p27 protein levels, we focused our attention on the SCFSkp2 ubiquitin ligase complex that controls the rate of degradation of this protein. We found that expression of Pim-1 increases the level of Skp2 through direct binding and phosphorylation of multiple sites on this protein. Along with known Skp2 phosphorylation sites including Ser64 and Ser72, we have identified Thr417 as a unique Pim-1 phosphorylation target. Phosphorylation of Thr417 controls the stability of Skp2 and its ability to degrade p27. Additionally, we found that Pim-1 regulates the anaphase-promoting complex or cyclosome (APC/C complex) that mediates the ubiquitination of Skp2. Pim-1 phosphorylates Cdh1 and impairs binding of this protein to another APC/C complex member, CDC27. These modifications inhibit Skp2 from degradation. Marked increases in Skp2 caused by these mechanisms lower cellular p27 levels. Consistent with these observations, we show that Pim-1 is able to cooperate with Skp2 to signal S phase entry. Our data reveal a novel Pim-1 kinase-dependent signaling pathway that plays a crucial role in cell cycle regulation.  相似文献   

11.
Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27Kip1, a principal target of the SCFSkp2 complex. Genetic ablation of p27Kip1 in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27Kip1 by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2-/- MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ), largely restored lipid accumulation and PPARγ gene expression in Skp2−/− MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27Kip1 expression.  相似文献   

12.
p27Kip1 is a cyclin-dependent kinase inhibitor that plays a critical role in regulating G1/S transition, and whose activity is, in part, regulated through interactions with D-type cyclins. We have generated the BD1-9 cell line, a BaF3 pro-B cells derivative in which cyclin D1 can be induced rapidly and reversibly by ponasterone A. The induction of cyclin D1 expression leads to a targeted p27Kip1 accumulation in both cytoplasmic and nuclear compartments. But, only the p27Kip1 form phosphorylated on serine 10 (pSer10-p27Kip1) accumulates in BD1-9 cells. We found that the binding of cyclin D1 and pSer10-p27Kip1 prevents p27Kip1 degradation by the cytoplasmic Kip1 ubiquitylation-promoting complex (KPC) proteosomic pathway. Importantly, the nuclear CDK2 activity which is crucial for G1/S transition is not altered by p27Kip1 increase. Using siRNA techniques, we revealed that p27Kip1 inhibition does not affect the distribution of BD1-9 cells in the different phases of the cell cycle. Our study demonstrates that aberrant cyclin D1 expression acts as a p27Kip1 trap in B lymphocytes but does not induce p27Kip1 relocation from the nucleus to the cytoplasm and does not modulate the G1/S transition. Since our cellular model mimics what observed in aggressive lymphomas, our data bring new insights into the understanding of their physiopathology.  相似文献   

13.
Cell cycle arrest in potentially dividing cells is often mediated by inhibitors of G1/S-phase cyclin-dependent kinases. The cyclin E/CDK2-inhibitor p27Kip1 has been implicated in this context in epithelial cells. We cloned and sequenced p27Kip1 of ducklings (Anas platyrhynchos) and used an in vitro assay system to study the mechanism of p27Kip1 downregulation in the nasal gland which precedes an increase in proliferation rate upon initial exposure of the animals to osmotic stress. Western blot studies revealed that p27Kip1 is downregulated during 24 h of osmotic stress in ducklings with the steepest decline in protein levels between 5 and 8 h. As indicated by the results of Northern blot and semi-quantitative PCR studies, protein downregulation is not accompanied by similar changes in mRNA levels indicating that Kip1 is regulated mainly at the translational (synthesis) or posttranslational level (degradation). Using recombinant duck Kip1 protein expressed in E. coli, we showed that Kip1 is subject to polyubiquitinylation by cytosolic enzymes from nasal gland cells indicating that loss of Kip1 may be regulated, at least in part, by acceleration of protein degradation. In cultured nasal gland tissue, attenuation of Kip1 expression could be induced by activation of the muscarinic acetylcholine receptor indicating that mAChR-receptor signalling may play a role in the re-entry of quiescent gland cells into the cell cycle.  相似文献   

14.
Phosphorylation of the cyclin-dependent kinase inhibitor p27(Kip1) has been thought to regulate its stability. Ser(10) is the major phosphorylation site of p27(Kip1), and phosphorylation of this residue affects protein stability. Phosphorylation of p27(Kip1) on Ser(10) has now been shown to be required for the binding of CRM1, a carrier protein for nuclear export. The p27(Kip1) protein was translocated from the nucleus to the cytoplasm at the G(0)-G(1) transition of the cell cycle, and this export was inhibited by leptomycin B, a specific inhibitor of CRM1-dependent nuclear export. The nuclear export and subsequent degradation of p27(Kip1) at the G(0)-G(1) transition were observed in cells lacking Skp2, the F-box protein component of an SCF ubiquitin ligase complex, indicating that these early events are independent of Skp2-mediated proteolysis. Substitution of Ser(10) with Ala (S10A) markedly reduced the extent of p27(Kip1) export, whereas substitution of Ser(10) with Asp (S10D) or Glu (S10E) promoted export. Co-immunoprecipitation analysis showed that CRM1 preferentially interacted with S10D and S10E but not with S10A, suggesting that the phosphorylation of p27(Kip1) on Ser(10) is required for its binding to CRM1 and for its subsequent nuclear export.  相似文献   

15.
16.
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPβ (CCAAT/enhancer binding protein β). Early induced C/EBPβ is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G1/S checkpoint synchronously. Thr188 of C/EBPβ is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser184 or Thr179 by GSK3β, which translocates into the nuclei during the G1/S transition. Many events take place during the G1/S transition, including reduction in p27Kip1 protein levels, retinoblastoma (Rb) phosphorylation, GSK3β nuclear translocation, and C/EBPβ binding to target promoters. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is stabilized, thus maintaining expression of p27Kip1, which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27Kip1 blocks the nuclear translocation of GSK3β and DNA binding capability of C/EBPβ. Hypoxia also blocks nuclear translocation of GSK3β and DNA binding capability of C/EBPβ in HIF-1α knockdown 3T3-L1 cells that fail to induce p27Kip1. Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G1/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3β and the DNA binding capability of C/EBPβ by blocking the G1/S transition through HIF-1α-dependent induction of p27Kip1 and an HIF-1α/p27-independent mechanism.  相似文献   

17.
18.
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.  相似文献   

19.
Enhanced degradation of cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is known to be a powerful prognostic marker in many types of human cancers. Human CDK subunit 1 (Cks1) and S-phase kinase associated protein 2 (Skp2) are components of the SCF(Skp2) complex, which acts as a ubiquitin ligase for p27(Kip1). There are no reports about the involvement of Cks1 in the pathogenesis of human cancer. Here we show high expression of Cks1 in non-small cell lung cancers (NSCLCs) using Western blotting and quantitative real-time RT-PCR. The Skp2 mRNA expression level was high in squamous cell carcinomas and was inversely related with the p27(Kip1) protein level in individual clinical samples. In contrast, Cks1 mRNA expression had no such relationship with p27(Kip1), although Cks1 mRNA was significantly elevated in adenocarcinomas. These results suggest that high expression of Skp2 and Cks1 may be involved in the pathogenesis of NSCLCs via different mechanisms.  相似文献   

20.
The INK4 and Kip/Cip families of Cyclin Dependent Kinase inhibitors (CKIs) are regulators of the cell cycle. In addition, CKIS including p27Kip1can protect cells from apoptosis in vitro. However, little is known about protective effect of p27Kip1in vivo. We used systemic treatment with aminoglycosides to induce hair-cell death in the basilar papilla (BP), the auditory organ of the avian inner ear, and characterised the expression of p27Kip1with confocal and immunofluorescence microscopy. In contrast to the adult mammalian cochlea where p27Kip1is expressed only in supporting cells, p27Kip1is found in the nuclei of both hair cells and supporting cells in the BP of the normal, mature bird. Forty-eight hours after gentamicin treatment, hair cells with TUNEL positive nuclei and hair cells with pyknotic nuclei were both detected, suggesting many hair cells die by apoptosis. When the BP was double labelled for p27Kip1and myosin VIIa, a hair-cell specific protein, all dying hair cells that had been ejected from the epithelium were found to be myosin VIIa positive but negative for p27Kip1even though nuclear remnants were still visible. In the transition zone where partial hair-cell loss occurs, freshly ejected hair cells lying immediately above the surface of the BP no longer expressed p27Kip1. Damaged hair cells within the epithelium in the transition zone contained p27Kip1in their cytoplasm but not in their nuclei. These data support recent in vitro findings suggesting that p27Kip1protects cells from apoptosis and that its downregulation may be a general feature of programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号