首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An B  Li B  Qin G  Tian S 《Current microbiology》2012,65(2):122-127
In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.  相似文献   

2.
3.
4.
Fourteen wild-type baking strains of Saccharomyces cerevisiae were grown in batch culture to true stationary phase (exogenous carbon source exhausted) and tested for their trehalose content and their tolerance to heat (52°C for 4.5 min), ethanol (20% v/v for 30 min), H2O2 (0.3 M for 60 min), rapid freezing (−196°C for 20 min, cooling rate 200°C min−1), slow freezing (−20°C for 24 h, cooling rate 3°C min−1), salt (growth in 1.5 M NaCl agar) or acetic acid (growth in 0.4% w/v acetic acid agar) stresses. Stress tolerance among the strains was highly variable and up to 1000-fold differences existed between strains for some types of stress. Compared with previously published reports, all strains were tolerant to H2O2 stress. Correlation analysis of stress tolerance results demonstrated relationships between tolerance to H2O2 and tolerance to all stresses except ethanol. This may imply that oxidative processes are associated with a wide variety of cellular stresses and also indicate that the general robustness associated with industrial yeast may be a result of their oxidative stress tolerance. In addition, H2O2 tolerance might be a suitable marker for the general assessment of stress tolerance in yeast strains. Trehalose content failed to correlate with tolerance to any stress except acetic acid. This may indicate that the contribution of trehalose to tolerance to other stresses is either small or inconsistent and that trehalose may not be used as a general predictor of stress tolerance in true stationary phase yeast. Received 10 October 1995/ Accepted in revised form 10 September 1996  相似文献   

5.

Background

Pichia fermentans DiSAABA 726 is a dimorphic yeast that reversibly shifts from yeast-like to pseudohyphal morphology. This yeast behaves as a promising antagonist of Monilia spp. in the yeast-like form, but becomes a destructive plant pathogen in the pseudohyphal form thus raising the problem of the biological risk associated with the use of dimorphic yeasts as microbial antagonists in the biocontrol of phytopathogenic fungi.

Methods

Pichia fermentans DiSAABA 726 was grown in urea- and methionine-containing media in order to induce and separate yeast-like and pseudohyphal morphologies. Total RNA was extracted from yeast-like cells and pseudohyphae and retro-transcribed into cDNA. A rapid subtraction hybridization approach was utilized to obtain the cDNA sequences putatively over-expressed during growth on methionine-containing medium and involved in pseudohyphal transition.

Results

Five genes that are over-expressed during yeast-like/pseudohyphal dimorphic transition were isolated. One of these, encoding a putative phospholipase C, is involved in P. fermentans filamentation. In fact, while the inhibition of phospholipase C, by means of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18), is accompanied by a significant reduction of pseudohyphae formation in P. fermentans, the addition of exogenous cAMP fully restores pseudohyphal growth also in the presence of Et-18.

Conclusion

Phospholipase C is part of a putative “methionine sensing machinery” that activates cAMP-PKA signal transduction pathway and controls P. fermentans yeast-like/pseudohyphal dimorphic transition.

General significance

Phospholipase C is a promising molecular target for further investigations into the link between pseudohyphae formation and pathogenicity in P. fermentans.  相似文献   

6.
7.
8.
Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances.  相似文献   

9.
Abscisic acid stress ripening (ASR1) protein is a small hydrophilic, low molecular weight, and stress-specific plant protein. The gene coding region of ASR1 protein, which is induced under high salinity in rice (Oryza sativa Ilmi), was cloned into a yeast expression vector pVTU260 and transformed into yeast cells. Heterologous expression of ASR1 protein in transgenic yeast cells improved tolerance to abiotic stresses including hydrogen peroxide (H2O2), high salinity (NaCl), heat shock, menadione, copper sulfate, sulfuric acid, lactic acid, salicylic acid, and also high concentration of ethanol. In particular, the expression of metabolic enzymes (Fba1p, Pgk1p, Eno2p, Tpi1p, and Adh1p), antioxidant enzyme (Ahp1p), molecular chaperone (Ssb1p), and pyrimidine biosynthesis-related enzyme (Ura1p) was up-regulated in the transgenic yeast cells under oxidative stress when compared with wild-type cells. All of these enzymes contribute to an alleviated redox state to H2O2-induced oxidative stress. In the in vitro assay, the purified ASR1 protein was able to scavenge ROS by converting H2O2 to H2O. Taken together, these results suggest that the ASR1 protein could function as an effective ROS scavenger and its expression could enhance acquired tolerance of ROS-induced oxidative stress through induction of various cell rescue proteins in yeast cells.  相似文献   

10.
We found that species combinations such as Lactobacillus casei subsp. rhamnosus IFO3831 and Saccharomyces cerevisiae Kyokai-10 can form a mixed-species biofilm in coculture. Moreover, the Kyokai-10 yeast strain can form a biofilm in monoculture in the presence of conditioned medium (CM) from L. casei IFO3831. The active substance(s) in bacterial CM is heat sensitive and has a molecular mass of between 3 and 5 kDa. In biofilms from cocultures or CM monocultures, yeast cells had a distinct morphology, with many hill-like protrusions on the cell surface.  相似文献   

11.
Environmental stresses considerably limit plant productivity. At the molecular level the negative effect of stress is often mediated by reactive oxygen species-initiated oxidative damage. Hence, it was hypothesised that increased tolerance to several environmental constraints could be achieved through enhanced tolerance to oxidative stress. In recent years much effort has been undertaken to improve oxidative stress tolerance by transforming plants with native or bacterial genes coding either for reactive oxygen species-scavenging enzymes or for enzymes modulating the cellular antioxidant capacity. This review deals with data on transgenic plants with altered antioxidant capacity and focuses on the new insight into the antioxidant defence mechanism given by this type of experimental model.  相似文献   

12.
Transgenic sweetpotato (Ipomoea batatas L. cv. Yulmi) plants expressing the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene under the control of an oxidative stress–inducible peroxidase (SWPA2) promoter (referred to as SN plants) were developed and evaluated for enhanced tolerance of SN plants under various abiotic stress conditions. The level of AtNDPK2 expression and NDPK activity in SN plants following methyl viologen (MV) treatment was positively correlated with the plant’s tolerance to MV. Interestingly, we observed that antioxidant enzyme activities such as peroxidase, ascorbate peroxidase, and catalase increased in MV-treated SN plants. In addition, SN plants showed enhanced tolerance to cold, high salinity, and drought stresses by an increase in the activity of H2O2 scavenging enzymes. These results indicate that overexpression of AtNDPK2 in sweetpotato might efficiently modulate oxidative stress from various environmental stresses.  相似文献   

13.
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h–1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial–scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.  相似文献   

14.
《Genomics》2021,113(5):3224-3234
Germins and germin-like proteins (GLPs) were reported to participate in plant response to biotic and abiotic stresses involving hydrogen peroxide (H2O2) production, but their role in mitigating heat stress is poorly understood. Here, we investigated the ability of a Solanum tuberosum L. GLP (StGLP) gene isolated from the yeast cDNA library generated from heat-stressed potato plants and characterized its role in generating innate and/or acquired thermo-tolerance to potato via genetic transformation. The transgenic plants exhibited enhanced tolerance to gradual heat stress (GHS) compared with sudden heat shock (SHS) in terms of maximal cell viability, minimal ion leakage and reduced chlorophyll breakdown. Further, three StGLP transgenic lines (G9, G12 and G15) exhibited enhanced production of H2O2, which was either reduced or blocked by inhibitors of H2O2 under normal and heat stress conditions. This tolerance was mediated by up-regulation of antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) and other heat stress-responsive genes (StHSP70, StHSP20 and StHSP90) in transgenic potato plants. These results demonstrate that H2O2 produced by over-expression of StGLP in transgenic potato plants triggered the reactive oxygen species (ROS) scavenging signaling pathways controlling antioxidant and heat stress-responsive genes in these plants imparting tolerance to heat stress.  相似文献   

15.
16.
The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H2O2-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.  相似文献   

17.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

18.
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules found in all eukaryotes, and play significant roles in developmental and environmental signal transduction. In this study, a MAPK gene (GbMPK3), which showed homologous to AtMPK3 and NtWIPK, was isolated from sea-island cotton (Gossypium barbadense) and induced during multiple abiotic stress treatments including salt, cold, heat, dehydration and oxidative stress. Transgenic tobacco (Nicotiana benthamiana) with constitutively higher expression of GbMPK3 was conferred with enhanced drought tolerance, reduced water loss during drought treatment and improved plant height and survival rates after re-watering. Additionally, the gene expression levels and enzymatic activity of antioxidant enzymes were more strongly induced with depressed hydrogen peroxide accumulation in GbMPK3-overexpressing tobacco compared with wild-type under drought condition. Furthermore, observation of seed germination and leaf morphology showed that tolerance of transgenic plants to methyl viologen was improved due to increased antioxidant enzyme expression, suggesting that GbMPK3 may positively regulate drought tolerance through enhanced reactive oxygen species scavenging ability.  相似文献   

19.
Candida albicans ATCC 26555 switched at high frequency (10(-1) to 10(-3)) between several phenotypes identified by colony morphology on a defined mineral amino-acid-containing agar medium supplemented with arginine and zinc (LAZ medium). When cells taken from colonies exhibiting distinct morphologies were plated directly onto LAZ agar, spontaneous conversion to all the variant phenotypes occurred at combined frequencies of 2.1 x 10(-1) to 9.5 x 10(-3). However, when cells taken from the different colonial phenotypes were plated directly onto an undefined medium (yeast extract/peptone/dextrose; YPD medium), or first incubated in liquid YPD medium and then cloned on YPD agar, all colonies observed exhibited the same phenotype (smooth-white). When cells from the smooth-white colonies were plated as clones on LAZ agar, the original switch phenotype reappeared. These results suggest that environmental conditions such as the growth medium (and possibly the temperature) influence switching by suppressing phenotype expression, but have no effect on genotype. The variant colony morphologies also appeared to be associated with differences in the relative proportions of yeast and mycelial cells. Zymolyase digests of wall preparations obtained from cells belonging to different colonial phenotypes were analysed by SDS-PAGE. After blotting to nitrocellulose paper, the mannoproteins were stained with Concanavalin A, with a polyclonal antiserum enriched in antibodies against mycelium-specific wall components, and with a monoclonal antibody raised against a high-molecular-mass mannoprotein band (260 kDa) specific to the walls of mycelial cells. The results suggest that phenotypic switching might be associated with changes in the degree of glycosylation in high-molecular-mass mannoproteins, or in the way these mannoproteins are bound to other cell wall components.  相似文献   

20.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号