首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psoriasis vulgaris is a chronic, debilitating skin disease that affects millions of people worldwide. There is no mouse model that accurately reproduces all facets of the disease, but the accessibility of skin tissue from patients has facilitated the elucidation of many pathways involved in the pathogenesis of psoriasis and highlighted the importance of the immune system in the disease. The pathophysiological relevance of these findings has been supported by genetic studies that identified polymorphisms in genes associated with NFκB activation, IL-23 signaling and T helper 17 (Th17)-cell adaptive immune responses, and in genes associated with the epidermal barrier. Recently developed biologic agents that selectively target specific components of the immune system are highly effective for treating psoriasis. In particular, emerging therapeutics are focused on targeting the IL-23–Th17-cell axis, and several agents that block IL-17 signaling have shown promising results in early-phase clinical trials. This review discusses lessons learned about the pathogenesis of psoriasis from mouse-and patient-based studies, emphasizing how the outcomes of clinical trials with T-cell-targeted and cytokine-blocking therapies have clarified our understanding of the disease.  相似文献   

2.
特应性皮炎(atopic dermatitis, AD)是一种以反复发作和严重瘙痒为特征、发病率最高的过敏性皮肤病。AD的致病机制涉及遗传易感性、表皮屏障功能障碍、微生物组失调、免疫反应失衡以及环境等多个因素,而现有治疗用药副作用大、疗效欠佳。目前研究已发现肠道菌群尤其是益生菌在AD中起着重要作用。益生菌能够通过抑制病原菌、增强屏障功能、改善肠道环境和平衡Th1/Th2免疫应答等机制改善AD症状。本文综述了AD患者皮肤及肠道微生态特征,基于AD发病的致病机制和影响因素,系统阐明益生菌缓解AD的机制,以期为益生菌治疗AD及相关皮肤过敏性疾病提供理论支持。  相似文献   

3.
Modification of the innate immune cell environment has recently been recognized as a viable treatment strategy for reducing autoimmune disease pathology. MIS416 is a microparticulate immune response modifier that targets myeloid cells, activating cytosolic receptors NOD2 and TLR9, and has completed a phase 1b/2a trial for the treatment of secondary progressive multiple sclerosis. Using a mouse model of multiple sclerosis, we are investigating the pathways by which activation of TLR9 and NOD2 may modify the innate immune environment and the subsequent T cell-mediated autoimmune responses. We have found that MIS416 has profound effects on the Th subset balance by depressing antigen-specific Th1, Th17, and Th2 development. These effects coincided with an expansion of specific myeloid subpopulations and increased levels of MIS416-stimulated IFN-γ by splenocytes. Additionally, systemic IFN-γ serum levels were enhanced and correlated strongly with disease reduction, and the protective effect of MIS416 was abrogated in IFN-γ-deficient animals. Finally, treatment of secondary progressive MS patients with MIS416 similarly elevated the levels of IFN-γ and IFN-γ–associated proteins in the serum. Together, these studies demonstrate that administration of MIS416, which targets innate cells, reshapes autoimmune T cell responses and leads to a significant reduction in CNS inflammation and disease.  相似文献   

4.
Atopic dermatitis (AD) is a common pruritic inflammatory disease triggered by a defective skin barrier and immunodysregulation. AD has been considered a typical example of a Th2 response associated with allergic disease. In the early phases of the disease, symptoms include IgE hyperproduction, eosinophil accumulation, and mast cell activation; in the chronic phase, a Th1-dominant immune response is also observed at the sites of AD skin lesions. The role of IL-17-producing Th (Th17) cells in AD has not been established. In the current study, we found that pyridone 6 (P6), a pan-JAK inhibitor, delayed the onset and reduced the magnitude of skin disease in an AD-like skin-disease model of NC/Nga mice. P6 reduced IFN-γ and IL-13, whereas it enhanced IL-17 and IL-22 expression. In vitro, P6 also inhibited both Th1 and Th2 development, whereas it promoted Th17 differentiation from naive T cells when present within a certain range of concentrations. This was probably because P6 strongly inhibited STAT1, STAT5, and STAT6 phosphorylation, whereas STAT3 phosphorylation was less efficiently suppressed by P6 at the same concentration. Furthermore, IL-22 protects keratinocytes from apoptosis induced by IFN-γ, and administration of IL-17 and IL-22 partially ameliorated skin diseases in NC/Nga mice. These results suggested that the JAK inhibitor P6 is therapeutic for AD by modulating the balance of Th2 and Th17.  相似文献   

5.
The classical Th1/Th2 paradigm previously defining atopic dermatitis (AD) and psoriasis has recently been challenged with the discovery of Th17 T cells that synthesize IL-17 and IL-22. Although it is becoming evident that many Th1 diseases including psoriasis have a strong IL-17 signal, the importance of Th17 T cells in AD is still unclear. We examined and compared skin biopsies from AD and psoriasis patients by gene microarray, RT-PCR, immunohistochemistry, and immunofluorescence. We found a reduced genomic expression of IL-23, IL-17, and IFN-gamma in AD compared with psoriasis. To define the effects of IL-17 and IL-22 on keratinocytes, we performed gene array studies with cytokine-treated keratinocytes. We found lipocalin 2 and numerous other innate defense genes to be selectively induced in keratinocytes by IL-17. IFN-gamma had no effect on antimicrobial gene-expression in keratinocytes. In AD skin lesions, protein and mRNA expression of lipocalin 2 and other innate defense genes (hBD2, elafin, LL37) were reduced compared with psoriasis. Although AD has been framed by the Th1/Th2 paradigm as a Th2 polar disease, we present evidence that the IL-23/Th17 axis is largely absent, perhaps accounting for recurrent skin infections in this disease.  相似文献   

6.
Mutations in the presenilin‐1 (PS1) gene are independent causes of familial Alzheimer's disease (AD). AD patients have dysregulated immunity, and PS1 mutant mice exhibit abnormal systemic immune responses. To test whether immune function abnormality caused by a mutant human PS1 gene (mhPS1) could modify AD‐like pathology, we reconstituted immune systems of AD model mice carrying a mutant human amyloid precursor protein gene (mhAPP; Tg2576 mice) or both mhAPP and mhPS1 genes (PSAPP mice) with allo‐geneic bone marrow cells. Here, we report a marked reduction in amyloid‐β (Aβ) levels, β‐amyloid plaques and brain inflammatory responses in PSAPP mice following strain‐matched wild‐type PS1 bone marrow reconstitution. These effects occurred with immune switching from pro‐inflammatory T helper (Th) 1 to anti‐inflammatory Th2 immune responses in the periphery and in the brain, which likely instructed microglia to phagocytose and clear Aβ in an ex vivo assay. Conversely, Tg2576 mice displayed accelerated AD‐like pathology when reconstituted with mhPS1 bone marrow. These data show that haematopoietic cells bearing the mhPS1 transgene exacerbate AD‐like pathology, suggesting a novel therapeutic strategy for AD based on targeting PS1 in peripheral immune cells.  相似文献   

7.
Atopic dermatitis (AD) is a chronic inflammatory skin disease and the pathogenesis of AD is associated with the release of various cytokines/chemokines due to activated Th(2) immune responses. Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotide in the context of particular base sequence (CpG motifs) are known to have the immunostimulatory activities in mice and to convert from Th(2) to Th(1) immune responses in AD. We aimed to investigate that CpG ODN, especially phosphodiester form, can stimulate the protective immunity in NC/Nga mice with AD. We isolated BMDCs from NC/Nga mice and then, cultured with GM-CSF and IL-4 for 6 days, and treated for 2 days by either phosphorothioate ODN or phosphodiester ODN. CpG ODN-treated DCs resulted in more production of IL-12. When CpG ODN-treated DCs were intravenously injected into the NC/Nga mice, the NC/Nga mice with CpG ODN-treated DCs showed significant improvement of AD symptoms and decrease of IgE level. Histopathologically, the NC/Nga mice skin with CpG ODN-treated DCs showed the decreased IL-4 and TARC expression comparing with non-injected mice. These results may suggest that phosphodiester CpG ODN-treated DCs might function as a potent adjuvant for AD in a mouse model.  相似文献   

8.
Atopic dermatitis (AD) is a pruritic, chronically relapsing skin disease in which Th2 cells play a crucial role in cutaneous and extracutaneous immune reactions. In humans, CD11c+CD123- myeloid dendritic cells (mDC) and CD11c-CD123+ plasmacytoid DC (pDC) orchestrate the decision-making process in innate and acquired immunity. Since the number and function of these blood dendritic cell (DC) subsets reportedly reflect the host immune status, we studied the involvement of the DC subsets in the pathogenesis of AD. Patients with AD had an increased DC number and a low mDC:pDC ratio with pDC outnumbering mDC in the peripheral blood compared with normal subjects and psoriasis patients (a Th1 disease model group). The mDC:pDC ratio was correlated with the total serum IgE level, the ratio of IFN-gamma-producing blood cells:IL-4-producing blood cells, and the disease severity. In vitro allogeneic stimulation of naive CD4+ cells with atopic DC showed that the ability of pDC for Th1 induction was superior or comparable to that of mDC. In skin lesions, pDC infiltration was in close association with blood vessels expressing peripheral neural addressins. Therefore, compartmental imbalance and aberrant immune function of the blood DC subsets may deviate the Th1/Th2 differentiation and thus induce protracted allergic responses in AD.  相似文献   

9.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathogenesis. Although regulatory T cells (Tregs) have previously been studied in AD, their role remains controversial, likely owing to patient heterogeneity. Thus, we recruited adult AD patients and age‐matched healthy controls, and assessed their filaggrin (FLG) genotype, serum IgE level, and eczema area and severity index (EASI). We found increased proportions of all circulating Treg subpopulations in AD patients. Moreover, we show positive correlations between circulating Tregs and serum IgE FLG null mutations limited the expansion of both memory and effector Tregs and enhanced that of recently thymus‐emigrated Tregs. Furthermore, proportions of circulating Th2‐ or Th17‐Tregs but not Th1‐Tregs were increased in AD patients, and accentuated by FLG null mutations, thereby mimicking the immune deviation observed in Th cell populations. Moreover, ICOS+ Tregs showed reduced production of interleukin‐10, suggesting impaired immunosuppression in AD. The level of demethylation of FOXP3i1, which reflects the stability of FOXP3 expression, was similar in the blood and skin of AD patients and healthy controls. Overall, these results show that Tregs may participate into AD pathogenesis and that FLG null mutations exert further modifications on specific subpopulations of circulating Tregs.  相似文献   

10.
In Alzheimer's disease (AD) the accumulation of pathological forms of the beta-amyloid (Abeta) peptide are believed to be causal factors in the neurodegeneration that results in the loss of cognitive function in patients. Anti-Abeta antibodies have been shown to reduce Abeta levels in transgenic mouse models of AD and in AN-1792 clinical trial on AD patients; however, the clinical trial was halted when some patients developed meningoencephalitis. Theories on the cause of the adverse events include proinflammatory "primed patients," a Th1-inducing adjuvant, and Abeta autoreactive T cells. New immunotherapy approaches are being developed to eliminate these putative risk factors. Mannan, which is recognized by pattern recognition receptors of the innate immune system, can be utilized as a molecular adjuvant to promote a Th2-mediated immune response to conjugated B cell epitopes. The N-terminus of Abeta was conjugated to mannan, and used to immunize mice with low concentrations of immunoconjugate, without a conventional adjuvant. Mannan induced a significant and highly polarized toward Th2 phenotype anti-Abeta antibody response not only in BALB/c, but also in B6SJL F1 mice. New preclinical trials in AD mouse models may help to develop novel immunogen-adjuvant configurations with the potential to avoid the adverse immune response that occurred in the first clinical trial.  相似文献   

11.
Alzheimer's disease (AD) is the sixth leading cause of US deaths. In addition to neurodegenerative deficits in AD, changes in the immune system have also been observed. Proteomic analysis of specific immune cell populations may help gain insights into mechanisms of peripheral immunity in AD. Herein, we report proteome characterization for two subsets of splenocytes (i.e. CD90+ cells and a heterogeneous pool of CD90? cells) from a double transgenic mutant amyloid precursor protein/presenilin‐1 (Aβpp/ps‐ 1) AD mouse model. Overall, 906 proteins were identified from both cell types with 275 and 334 proteins uniquely identified as CD90+ and CD90? cells, respectively. Proteins identified in CD90+ and CD90? cells were significantly involved in 18 and 19 KEGG pathways, respectively. Amongst these, pathways associated with AD and antigen processing and presentation were identified in CD90+ and CD90? subsets, respectively. This is the first study to provide a reference proteome map for splenocyte populations in A βpp/ps‐ 1 double transgenic mice which will be helpful for future studies focused on understanding peripheral changes in this model. All MS data have been deposited in the ProteomeXchange with identifier PXD000203 ( http://proteomecentral.proteomexchange.org/dataset/PXD000203 ).  相似文献   

12.
Atopic dermatitis (AD) is a pruritic inflammatory skin disease characterized by an elevation of the total IgE level in plasma, the infiltration of mast cells and eosinophils, and the expression of cytokines by Th2 cells. NC/Nga mice kept in conventional conditions are known to develop skin lesions resembling human AD. We examined in this study the alterations of immune response in NC/Nga mice kept in conventional conditions, following transdermal application of CpG-oligodeoxynucleotides (ODN), which plays a critical role in immunity via the augmentation of Th1-type and suppression of Th2-type responses. CpG-ODN remarkably changed the immune response from type Th2 to Th1 as determined from cytokine mRNA and Ab levels. The serum IgE level was decreased and the expression of IgG2a was up-regulated. The application of CpG-ODN to the skin also decreased inflammatory infiltration of mast cells, and suppression in the skin lesions was observed. Furthermore, the generation of regulatory T cells, which are considered immune suppressive T cells, was observed in the skin on treatment with CpG-ODN. These results suggested CpG-ODN is effective for immunotherapy in patients with AD, which is characterized by Th2-dominated inflammation.  相似文献   

13.
Atopic dermatitis (AD) is a pruritic inflammatory skin disease characterized by elevation of plasma levels of total IgE, infiltration of mast cells and eosinophils, and the expression of cytokines by Th2 T cells. However, the role of Th2 cells in the pathogenesis of AD is not fully understood. In this study we examined the NC/Nga (NC) mouse model of AD and established STAT6-deficient (SATA6(-/-)) NC mice to investigate the relevance of IL-4-mediated immune responses. Surprisingly, these mice elicited AD-like skin lesions at equivalent frequency and time of onset compared with normal NC littermates. Histological features of the lesion in STAT6(-/-) NC mice fulfilled the criteria for the pathogenesis of AD, although these mice fail to produce IgE and Th2 cytokines. The lymph nodes proximal to the regions of skin that developed lesions exhibited massive enlargement elicited by the accumulation of activated IFN-gamma-secreting T cells. Moreover, caspase I, IL-18, IL-12, and IFN-gamma are found to be highly expressed at the skin lesion, occurring simultaneously with elevation of eotaxin 2 and CCR3 expression. Therefore, the Th2-mediated immune response is not necessary for the development of AD-like skin disease in NC mice. The skin microenvironment that favored IFN-gamma production tightly correlates with the skin disease in NC mice through the infiltration of eosinophils.  相似文献   

14.
Asthmatics with a severe form of the disease are frequently refractory to standard medications such as inhaled corticosteroids, underlining the need for new treatments to prevent the occurrence of potentially life-threatening episodes. A major obstacle in the development of new treatments for severe asthma is the heterogeneous pathogenesis of the disease, which involves multiple mechanisms and cell types. Furthermore, new therapies might need to be targeted to subgroups of patients whose disease pathogenesis is mediated by a specific pathway. One approach to solving the challenge of developing new treatments for severe asthma is to use experimental mouse models of asthma to address clinically relevant questions regarding disease pathogenesis. The mechanistic insights gained from mouse studies can be translated back to the clinic as potential treatment approaches that require evaluation in clinical trials to validate their effectiveness and safety in human subjects. Here, we will review how mouse models have advanced our understanding of severe asthma pathogenesis. Mouse studies have helped us to uncover the underlying inflammatory mechanisms (mediated by multiple immune cell types that produce Th1, Th2 or Th17 cytokines) and non-inflammatory pathways, in addition to shedding light on asthma that is associated with obesity or steroid unresponsiveness. We propose that the strategy of using mouse models to address clinically relevant questions remains an attractive and productive research approach for identifying mechanistic pathways that can be developed into novel treatments for severe asthma.  相似文献   

15.
The pathogenesis of Alzheimer’s disease (AD) has been strongly associated with the accumulation of amyloid beta (Aβ) peptides in brain, and immunotherapy targeting Aβ provides potential for AD prevention. A clinical trial in which AD patients were immunized with Aβ42 peptide was stopped when 6% of participants showed meningoencephalitis, apparently due to an inflammatory Th1 immune response. Previously, we and other have shown that Aβ42 DNA vaccination via gene gun generates a Th2 cellular immune response, which was shown by analyses of the respective antibody isotype profiles. We also determined that in vitro T cell proliferation in response to Aβ42 peptide re-stimulation was absent in DNA Aβ42 trimer-immunized mice when compared to Aβ42 peptide-immunized mice. To further characterize this observation prospectively and longitudinally, we analyzed the immune response in wild-type mice after vaccination with Aβ42 trimer DNA and Aβ42 peptide with Quil A adjuvant. Wild-type mice were immunized with short-term (1–3× vaccinations) or long-term (6× vacinations) immunization strategies. Antibody titers and isotype profiles of the Aβ42 specific antibodies, as well as cytokine profiles and cell proliferation studies from this longitudinal study were determined. Sufficient antibody titers to effectively reduce Aβ42, but an absent T cell proliferative response and no IFNγ or IL-17 secretion after Aβ42 DNA trimer immunization minimizes the risk of inflammatory activities of the immune system towards the self antigen Aβ42 in brain. Therefore, Aβ42 DNA trimer immunization has a high probability to be effective and safe to treat patients with early AD.  相似文献   

16.
Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.  相似文献   

17.
The recognition of peptidoglycan by cells of the innate immune system has been controversial; both TLR2 and nucleotide-binding oligomerization domain-2 (NOD2) have been implicated in this process. In the present study we demonstrate that although NOD2 is required for recognition of peptidoglycan, this leads to strong synergistic effects on TLR2-mediated production of both pro- and anti-inflammatory cytokines. Defective IL-10 production in patients with Crohn's disease bearing loss of function mutations of NOD2 may lead to overwhelming inflammation due to a subsequent Th1 bias. In addition to the potentiation of TLR2 effects, NOD2 is a modulator of signals transmitted through TLR4 and TLR3, but not through TLR5, TLR9, or TLR7. Thus, interaction between NOD2 and specific TLR pathways may represent an important modulatory mechanism of innate immune responses.  相似文献   

18.
Shi JQ  Chen J  Wang BR  Zhu YW  Xu Y  Wang J  Xiao H  Shi JP  Zhang YD  Xu J 《Peptides》2011,32(8):1617-1625
Amyloid beta peptide 1-15 (Aβ1-15) and its derivatives have attracted the attention of the scientific community as candidate vaccines for Alzheimer's disease (AD) immunotherapy. Recent studies suggested that Aβ1-42 modulated the immune system by inducing pro-inflammatory dendritic cells (DCs) with reduced antigen-presenting function. However, it remains elusive how Aβ1-15 impacts DCs function. We therefore investigated the modulation by short Aβ peptides of DCs from C57Bl/6J mice. Two new immunogens, a tandem repeat of two-lysine-linked Aβ1-15 sequences with or without an addition of a RGD motif, were tested. Chemotaxis, endocytosis, antigen presenting function and producing cytokines were measured. Both peptides increased migration/endocytosis of immature DCs and MHC II molecule expression/alloreactive T cell activation in TNF-α-matured DCs. In addition, they exhibited decreased production of Th1/Th2 cytokines and pro-inflammatory cytokines. Overall, the two peptides demonstrated strong immunogenicity but did not stimulate pro-inflammatory pathways. These results support the use of short Aβ immunogens in AD immunotherapy.  相似文献   

19.
Understanding fungal pathogenesis and host-pathogen immune interaction at various stages of infection is critical to examine strategies for bolstering antifungal immune defenses. Recombinant myeloid growth factors, especially granulocyte-macrophage colony-stimulating factor and the protagonist T helper (Th) 1 cytokine, interferon-γ, are most frequently used in patients with refractory invasive aspergillosis. These cytokines are given alone or in combination and have also been used together in neutropenic patients receiving donor granulocyte transfusions. Recently, a number of investigators have presented provoking data regarding auxiliary effect of conventional antifungal drugs on hosts’ immune response and pathogen’s susceptibility for antifungal immune defenses. Antifungal immunotherapy and its ameliorative role in treatment for Aspergillus disease will need clinical trials that 1) consider well-characterized fungal disease; 2) illustrate underlying immune defect(s) (such as Th1 vs Th2, vs Th17 and functional status of natural killer and effector scavenger cells); 3) include a more specific patient population; 4) include standardized antifungal drug therapy; and importantly 5) consider its impact on hosts’ immune response and changes in pathogen’s susceptibility and virulence. At present, immunotherapy is reserved for patients with life-threatening invasive fungal disease in whom conventional antifungal drug therapy has failed, or for patients with advanced fungal disease and with factors associated with high probability of failure of conventional therapy alone.  相似文献   

20.
The control of human health and diseases in the elderly population is becoming a challenge, since mean age and life expectation are progressively increasing as well as chronic degenerative diseases. These disorders are of complex diagnosis and they are difficult to be treated, but it is hoped that the predictive medicine will lead to more specific and effective treatment by using specific markers to identify persons with high risk of developing disease, before the clinical manifestation. Peripheral blood targets and biomarkers are currently the most practical, non-invasive means of disease diagnosing, predicting prognosis and therapeutic response. Human longevity is directly correlated with the optimal functioning of the immune system. Recent findings indicate that the sexual dimorphism of T helper (Th) cytokine pathways and the regulation of Th cell network homeostasis are normally present in the immune response and undergoes to adverse changes with ageing. Furthermore, immune senescence affects both men and women, but it does not affect them equally. Therefore, we hypothesize that the comprehension of the interferences between these gender specific pathways, the ageing immunological mechanism in pathological or healthy state and the current therapies, could lead to specifically tailored treatment and eventually improve the therapeutic success rates. Reaching this aim requires the identification of ageing gender-specific biomarkers that could easily reveal the above mentioned correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号