首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous experiment on the preservation of hay of high moisture content with formic acid, among other agents, aflatoxin was formed in the hay, and aflatoxin-forming strains of Aspergillus flavus were isolated from this hay after incubation in air as well as in an anaerobic jar. One isolate from the anaerobic jar was cultivated in a chemostat (Bioflo model C 30; New Brunswick Scientific Co.) in a defined medium with added B vitamins, yeast extract, or formic acid, with or without gas flow (air or nitrogen). In all cases where spore germination occurred, aflatoxin was formed in the cultures with gas flow, and small quantities of aflatoxins B1 and B2 occurred even in an atmosphere of nitrogen. Addition of B vitamins and supply of traces of air gave an approximately 15-fold increase in the amount of aflatoxin in 2 days. Carbon dioxide enrichment hindered aflatoxin formation on the defined medium even in the presence of B vitamins, but when formic acid was added, small quantities (5 to 15 micrograms/liter) were formed, and this low level remained constant until the gas flow was started.  相似文献   

2.
In a previous experiment on the preservation of hay of high moisture content with formic acid, among other agents, aflatoxin was formed in the hay, and aflatoxin-forming strains of Aspergillus flavus were isolated from this hay after incubation in air as well as in an anaerobic jar. One isolate from the anaerobic jar was cultivated in a chemostat (Bioflo model C 30; New Brunswick Scientific Co.) in a defined medium with added B vitamins, yeast extract, or formic acid, with or without gas flow (air or nitrogen). In all cases where spore germination occurred, aflatoxin was formed in the cultures with gas flow, and small quantities of aflatoxins B1 and B2 occurred even in an atmosphere of nitrogen. Addition of B vitamins and supply of traces of air gave an approximately 15-fold increase in the amount of aflatoxin in 2 days. Carbon dioxide enrichment hindered aflatoxin formation on the defined medium even in the presence of B vitamins, but when formic acid was added, small quantities (5 to 15 micrograms/liter) were formed, and this low level remained constant until the gas flow was started.  相似文献   

3.
The aim of the present study was to isolate and identify Aspergillus species associated with saffron plants in the city of Birjand (South Khorasan Province, Iran) as well as to assess their aflatoxin B1 production. Sampling was performed during 2013–2014 crop season. Aspergillus species were isolated and purified using general and specific culture media. Growth rates and macroscopic and microscopic characteristics of the isolates were determined using yeast extract, Czapek yeast extract, malt extract and creatine sucrose agar media at 25 and 37 °C. DNA was extracted by the modified CTAB method and beta-tubulin, calmodulin and internal transcribed spacer genes were amplified and sequenced. Phylogenetic position of the isolates was determined against other Aspergillus species. Thin layer chromatography was used to investigate the production of aflatoxin B1 by Aspergillus isolates. Based on the morphological characteristics, shape and colour of the colonies, and sequencing results, the isolates belonged to Aspergillus terreus, A. flavus, A. flavipes and A. niger species. Only A. flavus isolates were aflatoxin B1 producers. We concluded that the soil of the studied saffron fields contained several species of Aspergillus, with A. flavus significantly affecting crop production through contamination of the crop by aflatoxin.  相似文献   

4.
Isolation and Analysis of Molds from Soy Sauce Koji in Thailand   总被引:5,自引:3,他引:2       下载免费PDF全文
Five different isolates of Aspergillus and one of Mucor were compared with a Japanese commercial strain of Aspergillus oryzae for proteolytic activity on wheat bran substrate. One isolate of Aspergillus with superior protease production, identified as Aspergillus flavus var. columnaris, showed no detectable aflatoxin production on glutinous rice or soybean substrate. Preliminary tests using this fungus as a koji mold in a traditionally operated factory resulted in a soy sauce superior in quality to that usually produced.  相似文献   

5.
Two aflatoxin-producing isolates of Aspergillus flavus were grown for 5 days on Wort media at 2, 7, 13, 18, 24, 29, 35, 41, 46, and 52 C. Maximal production of aflatoxins occurred at 24 C. Maximal growth of A. flavus isolates occurred at 29 and 35 C. The ratio of the production of aflatoxin B1 to aflatoxin G1 varied with temperature. Aflatoxin production was not related to growth rate of A. flavus; one isolate at 41 C, at almost maximal growth of A. flavus, produced no aflatoxins. At 5 days, no aflatoxins were produced at temperatures lower than 18 C or higher than 35 C. Color of CHCl3 extracts appeared to be directly correlated with aflatoxin concentrations. A. flavus isolates grown at 2, 7, and 41 C for 12 weeks produced no aflatoxins. At 13 C, both isolates produced aflatoxins in 3 weeks, and one isolate produced increasing amounts with time. The second isolate produced increasing amounts through 6 weeks, but at 12 weeks smaller amounts of aflatoxins were recovered than at 6 weeks.  相似文献   

6.
An aflatoxin-producing isolate of Aspergillus flavus was found to be a consistent producer of aflatoxin on all substrates which supported the growth of the mold. In competition with six other selected molds, this isolate was dominant except with one species of Penicillium. Aflatoxin production was parallel to the extent of A. flavus growth whether effected by substrate or competition.  相似文献   

7.
The ability of two non-aflatoxigenic Aspergillus flavus Link isolates (CT3 and K49) to reduce aflatoxin contamination of corn was assessed in a 4-year field study (2001–2004). Soil was treated with six wheat inoculant treatments: aflatoxigenic isolate F3W4; two non-aflatoxigenic isolates (CT3 and K49); two mixtures of CT3 or K49 with F3W4; and an autoclaved wheat control, applied at 20 kg ha?1. In 2001, inoculation with the aflatoxigenic isolate increased corn grain aflatoxin levels by 188% compared to the non-inoculated control, while CT3 and K49 inoculation reduced aflatoxin levels in corn grain by 86 and 60%, respectively. In 2002, the non-toxigenic CT3 and K49 reduced aflatoxin levels by 61 and 76% compared to non-inoculated controls, respectively. In 2001, mixtures of aflatoxigenic and non-aflatoxigenic isolates had little effect on aflatoxin levels, but in 2002, inoculation with mixtures of K49 and CT3 reduced aflatoxin levels 68 and 37% compared to non-inoculated controls, respectively. In 2003 and 2004, a low level of natural aflatoxin contamination was observed (8 ng g?1). However, inoculation with mixtures of K49?+?F3W4 and CT3?+?F3W4, reduced levels of aflatoxin 65–94% compared to the aflatoxigenic strain alone. Compared to the non-sclerotia producing CT3, strain K49 produces large sclerotia, has more rapid in vitro radial growth, and a greater ability to colonize corn when artificially inoculated, perhaps indicating greater ecological competence. Results indicate that non-aflatoxigenic, indigenous A. flavus isolates, such as strain K49, have potential use for biocontrol of aflatoxin contamination in southern US corn.  相似文献   

8.
Aflatoxin contamination is a major problem in maize, groundnut, chillies, cotton and tree nuts. These aflatoxins are low molecular weight toxic and carcinogenic secondary metabolites produced by Aspergillus flavus, A. parasiticus and A. nomius. In the present study, a total of 11 isolates of A. flavus isolated from groundnut, maize and chilli collected from different locations of Tamil Nadu, India were tested for their ability to produce aflatoxin B1 (AFB1) in vitro by indirect competitive enzyme-linked immunosorbent assay. The results show that the isolates vary in their level of toxin production. The amount of AFB1 produced by the toxigenic isolates of A. flavus ranged from 6.6 to 108.1?ng?ml?1. Among the various isolates of A. flavus, the isolate VKR produced the highest amount (108.1?ng?ml?1) of AFB1. The isolates viz. CBE1, CBE2, BSR1, BSR3 and BSR4 were found to be non-toxigenic. The genetic variability among these isolates was assessed by Random amplified polymorphic DNA (RAPD) analysis. DNA fragments of between 0.15 and 3.0?kb were obtained using 13 random primers, and each isolate differed in the size and number of PCR products indicating considerable polymorphism. Cluster analysis using Unweighted Pair Group Method with Arithmetic Mean clearly separated the isolates into four main clusters confirming the genetic diversity among the isolates of A. flavus. Both toxigenic and non-toxigenic isolates were intermingled in these four groups, indicating that no relationship exists between RAPD profile and the production of aflatoxin by A. flavus.  相似文献   

9.
In recent yearsAspergillus flavus and aflatoxin production have been noted on several occasions in grain preserved with formic acid. Samples of mouldy barley treated with formic acid and stored in an open bin were investigated for the presence of fungi. In the lower part of the bin there was a clear dominance ofFusarium sporotrichioides, and deoxynivalenol and neosolaniol were detected.A. flavus andA. fumigatus were also present.Paecilomyces variotii occurred, almost as a pure culture, in the upper part of the bin, but no patulin was found. Cultivation of four fungal isolates from these genera on laboratory substrates containing formic acid showedP. variotii to be the most tolerant to formic acid, withstanding 150 mM, but still without patulin production.F. sporotrichioides andA. fumigatus tolerated only 6 mM formic acid. The growth ofA. flavus was reduced and atypical at 60 mM formic acid. Pretreatment ofA. flavus spores with formic acid increased aflatoxin production about 800 times.  相似文献   

10.
Twenty-one isolates ofAspergillus flavus Link ex Fries obtained from cotton, maize and wheat were screened for their ability to produce aflatoxins on two liquid media. Of these, sixteen isolates were toxigenic and produced only aflatoxin B1 as assessed by bioassay on okra seedlings and TLC method. For screening isolates ofA. flavus for aflatoxin formation, 0.7 % YES+ Salt medium was found to be good as also for obtaining higher yields of the toxin. Isolates ofA. flavus produced aflatoxin B1 ranging from 0.85 to 17.2 mg/50 ml. Maximum yield of aflatoxin was obtained when rice was used as the substrate in case of toxigenic isolates L-27 and C-9, and on maize in isolate M-11.  相似文献   

11.
The population dynamics of Aspergillus flavus, shaped in part by intraspecific competition, influence the likelihood and severity of crop aflatoxin contamination. Competition for nutrients may be one factor modulating intraspecific interactions, but the influences of specific types and concentrations of nutrients on competition between genotypes of A. flavus have not been investigated. Competition between paired A. flavus isolates on agar media was affected by varying concentrations of carbon (sucrose or asparagine) and nitrogen (nitrate or asparagine). Cocultivated isolate percentages from conidia and agar-embedded mycelia were quantified by measurements of isolate-specific single-nucleotide polymorphisms with quantitative pyrosequencing. Compositions and concentrations of nutrients influenced conidiation resulting from cocultivation, but the percentages of total conidia from each competing isolate were not predicted by sporulation of isolates grown individually. Success during sporulation did not reflect the outcomes of competition during mycelial growth, and the extents to which isolate percentages from conidia and mycelia differed varied among both isolate pairs and media. Whether varying concentrations of sucrose, nitrate, or asparagine increased, decreased, or had no influence on competitive ability was isolate dependent. Different responses of A. flavus isolates to nutrient variability suggest genotypes are adapted to different nutrient environments that have the potential to influence A. flavus population structure and the epidemiology of aflatoxin contamination.  相似文献   

12.
A two-year factorial experiment was utilized to test plants field-inoculated singly and in combination withAspergillus flavus andFusarium moniliforme. Pinbar inoculations were made through the husks with conidial suspensions, and 10-ear maize samples were harvested at 60 days post-silking for aflatoxin determinations. When ears were inoculated with both fungi simultaneously,F. moniliforme reduced aflatoxin formation byA. flavus isolate NRRL 3357 by approximately two-thirds.F. moniliforme had no significant effect on naturally occurring aflatoxin contamination byA. flavus. This may be due to the timing of infection by both fungi in the field. In nature,A. flavus andF. moniliforme respond differently to the environment, offering one explanation of whyF. moniliforme did not measurably affect the other fungus.  相似文献   

13.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

14.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

15.
Twenty-eight of 54 isolates of Aspergillus flavus grown on autoclaved agricultural commodities such as wheat, rice and corn were found to produce the mycotoxin cyclopiazonic acid. Eighteen of the A. flavus isolates produced aflatoxin, and fourteen isolates produced both cyclopiazonic acid and aflatoxin. A preliminary screening of some aflatoxin-contaminated corn samples revealed for the first time the natural occurrence of cyclopiazonic acid in agricultural commodities.  相似文献   

16.
In the present study, genetic diversity and mycotoxin profiles of Aspergillus flavus isolated from air (indoors and outdoors), levels (surfaces), and soils of five hospitals in Southwest Iran were examined. From a total of 146 Aspergillus colonies, 63 isolates were finally identified as A. flavus by a combination of colony morphology, microscopic criteria, and mycotoxin profiles. No Aspergillus parasiticus was isolated from examined samples. Chromatographic analyses of A. flavus isolates cultured on yeast extract–sucrose broth by tip culture method showed that approximately 10% and 45% of the isolates were able to produce aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA), respectively. Around 40% of the isolates produced sclerotia on Czapek–Dox agar. The isolates were classified into four chemotypes based on the ability to produce AF and CPA that majority of them (55.5%) belonged to chemotype IV comprising non-mycotoxigenic isolates. Random amplified polymorphic DNA (RAPD) profiles generated by a combination of four selected primers were used to assess genetic relatedness of 16 selected toxigenic and non-toxigenic isolates. The resulting dendrogram demonstrated the formation of two separate clusters for the A. flavus comprised both mycotoxigenic and non-toxigenic isolates in a random distribution. The obtained results in this study showed that RAPD profiling is a promising and efficient tool to determine intra-specific genetic variation among A. flavus populations from hospital environments. A. flavus isolates, either toxigenic or non-toxigenic, should be considered as potential threats for hospitalized patients due to their obvious role in the etiology of nosocomial aspergillosis.  相似文献   

17.
Aims: To study the interaction between Bacillus spp. and contaminating Aspergillus flavus isolated strains from Thai fermented soybean in order to limit aflatoxin production. To study the detoxification of aflatoxin B1 (AFB1) and ochratoxin A (OTA) by Bacillus spp. in order to find an efficient strain to remove these toxins. Methods and Results: One A. flavus aflatoxin-producing strain and 23 isolates of Bacillus spp. were isolated from soybean and fresh Thua-nao collected from the north of Thailand. Inhibition studies of A. flavus and A. westerdijkiae NRRL 3174 (reference strain) growth by all isolates of Bacillus spp. were conducted by dual culture technique on agar plates. These isolates were also tested for AFB1 and OTA detoxification ability on both solid and liquid media. Most of the strains were able to detoxify aflatoxin but only some of them could detoxify OTA. Conclusions: One Bacillus strain was able to inhibit growth of both Aspergillus strains and to remove both mycotoxins (decrease of 74% of AFB1 and 92·5% of OTA). It was identified by ITS sequencing as Bacillus licheniformis. The OTA decrease was due to degradation in OTα. Another Bacillus strain inhibiting both Aspergillus growth and detoxifying 85% of AFB1 was identified as B. subtilis. AFB1 decrease has not been correlated to appearance of a degradation product. Significance and Impact of the Study: The possibility to reduce AFB1 level by a strain from the natural flora is of great interest for the control of the quality of fermented soybean. Moreover, the same strain could be a source of efficient enzyme for OTA degradation in other food or feeds.  相似文献   

18.
Summary A nontoxigenic isolate of Aspergillus flavus (NRRL 5565) contains a viral genome consisting of 3 double-stranded RNA (ds-RNA) components with molecular weights of approximately 3 kb each. It thus shares a characteristical feature with a virus occuring in strains of Penicillium chrysogenum.Application of known inhibitors of doublestranded RNA virus synthesis results in stable aflatoxin formation by this originally nontoxigenic strain and the simultaneous loss of its ds-RNA traits. Since the inhibitor induced toxicity can be completely reverted by incubation with a virus from Penicillium chrysogenum (PcV), it is presumed that PcV or a functional related virus possibly constitutes the aflatoxin repressing determinant in Aspergillus flavus.  相似文献   

19.
A?atoxins are carcinogenic metabolites produced by Aspergillus flavus. Rice seeds may be contaminated by it at the time of harvesting or during storage. Detection of aflatoxigenic strains by TLC and analysis of genetic variability among 50 A. flavus cultures from seeds of various rice genotypes by PCR using 18 RAPD primers is reported here. About 58% isolates were aflatoxigenic whereas 42% were non-toxic. There were 246 bands and 48 haplotypes. Approximately 99% bands were polymorphic, and thus high degree of genetic variability was observed. All the primers were informative with PIC values of range 0.75–0.95. Seventeen RAPD markers were not found to be useful for the detection of aflatoxigenic A. flavus. However, one RAPD primer 3B could differentiate aflatoxigenic and non-toxigenic isolates to some extent. One allele of Primer 3B at approximately 480?bp was present in 85% aflatoxin non-producers and in 6% aflatoxigenic isolates. This information may be utilised for designing markers for differentiating toxic/non-toxic isolates of A. flavus.  相似文献   

20.
Pectinase and sclerotium production by strains ofAspergillus flavus were determined with a pectinase culture plate assay and a Cz 3% NaNO3 medium plate assay. In theA. flavus population, 51% of isolates produced sclerotia, the toxigenic strains showing a tendency to have smaller sclerotia. Strains producing both abundant small sclerotia and a large quantity of aflatoxin were not found. There was no linear correlation between the amount of aflatoxin produced and the number of sclerotia. Levels of pectinase produced by the toxigenic strains were higher than that of the non-toxigenic strains, and this character was more obvious in the sclerotium-producing strains than in the non-sclerotium-prodcing strains. In theA. flavus population from Zhejiang in which the toxigenic strain rate was low, toxigenic strains may require higher levels of pectinase to compete with the non-toxigenic strains when infecting foodstuffs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号