首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined deuterostome invertebrates, the sea urchin and amphioxus, and an extant primitive vertebrate, the lamprey, for the presence of structures expressing the HNK-1 carbohydrate and serotonin. In sea urchin embryos and larvae, HNK-1 positive cells were localized in the ciliary bands and in their precursor ectoderm. Serotonergic cells were exclusively observed in the apical organs. In juvenile amphioxus, primary sensory neurons in the dorsal nerve cords were HNK-1 immunoreactive. The juvenile amphioxus nerve cords contained anti-serotonin immunoreactive nerve fibers that seem to be the Rohde axons extending from amphioxus interneurons, the Rohde cells. In lamprey embryos, migrating neural crest cells and primary sensory neurons, including Rohon-Beard cells, expressed the HNK-1 carbohydrate. Lamprey larvae (ammocoetes) contained cell aggregates expressing both the HNK-1 carbohydrate and serotonin in the pronephros and in the regions adjacent to the gut epithelium. Some of these cell aggregates were present in the anti-serotonin positive visceral motor nerve net. Motor neurons and Müller fibers were serotonergic in ammocoetes. Comparison of the expression patterns of HNK-1 carbohydrate among sea urchins, amphioxus and lampreys seem to suggest the possible evolutionary origin of the neural crest, that is, ciliary bands in dipleurula-type ancestors evolved into primary sensory neurons in chordate ancestors, as inferred from Garstang's auricularia hypothesis, and the neural crest originated from the primary sensory neurons.  相似文献   

3.
The COE/EBF gene family marks a subset of prospective neurons in the vertebrate central and peripheral nervous system, including neurons deriving from some ectodermal placodes. Since placodes are often considered unique to vertebrates, we have characterised an amphioxus COE/EBF gene with the aim of using it as a marker to examine the timing and location of peripheral neuron differentiation. A single COE/EBF family member, AmphiCoe, was isolated from the amphioxus Branchiostoma floridae. AmphiCoe lies basal to the vertebrate COE/EBF genes in molecular phylogenetic analysis, suggesting that the duplications that formed the vertebrate COE/EBF family were specific to the vertebrate lineage. AmphiCoe is expressed in the central nervous system and in a small number of scattered ectodermal cells on the flanks of neurulae stage embryos. These cells become at least largely recessed beneath the ectoderm. Scanning electron microscopy was used to examine embryos in which the ectoderm had been partially peeled away. This revealed that these cells have neuronal morphology, and we infer that they are the precursors of epidermal primary sensory neurons. These characters lead us to suggest that differentiation of some ectodermal cells into sensory neurons with a tendency to sink beneath the embryonic surface represents a primitive feature that has become incorporated into placodes during vertebrate evolution.  相似文献   

4.
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.  相似文献   

5.
Cranial placodes are regions of thickened ectoderm that give rise to sense organs and ganglia in the vertebrate head. Homologous structures are proposed to exist in urochordates, but have not been found in cephalochordates, suggesting the first chordates lacked placodes. SoxB genes are expressed in discrete subsets of vertebrate placodes. To investigate how placodes arose and diversified in the vertebrate lineage we isolated the complete set of SoxB genes from amphioxus and analyzed their expression in embryos and larvae. We find that while amphioxus possesses a single SoxB2 gene, it has three SoxB1 paralogs. Like vertebrate SoxB1 genes, one of these paralogs is expressed in non-neural ectoderm destined to give rise to sensory cells. When considered in the context of other amphioxus placode marker orthologs, amphioxus SoxB1 expression suggests a diversity of sensory cell types utilizing distinct placode-type gene programs was present in the first chordates. Our data supports a model for placode evolution and diversification whereby the full complement of vertebrate placodes evolved by serial recruitment of distinct sensory cell specification programs to anterior pre-placodal ectoderm.  相似文献   

6.
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4′s ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.  相似文献   

7.
8.
Cladistic analyses generally place tunicates close to the base of the chordate lineage, consistent with the assumption that the tunicate tail is primitively simple, not secondarily reduced from a segmented trunk. Cephalochordates (i.e. amphioxus) are segmented and resemble vertebrates in having two distinct locomotory modes, slow for distance swimming and fast for escape, that depend on separate sets of motor neurons and muscle cells. The sense organs of both amphioxus and tunicate larvae serve essentially as navigational aids and, despite some uncertainty as to homologies, current molecular and ultrastructural data imply a close relationship between them. There are far fewer signs of modification and reduction in the amphioxus central nervous system (CNS), however, so it is arguably the closer to the ancestral condition. Similarities between amphioxus and tunicate sense organs are then most easily explained if distance swimming evolved before and escape behaviour after the two lineages diverged, leaving tunicates to adopt more passive means of avoiding predation. Neither group has the kind of sense organs or sensory integration centres an organism would need to monitor predators, yet mobile predators with eyes were probably important in the early Palaeozoic. For a predator, improvements in vision and locomotion are mutually reinforcing. Both features probably evolved rapidly and together, in an 'arms race' of eyes, brains and segments that left protochordates behind, and ultimately produced the vertebrate head.  相似文献   

9.
The regionalisation of cell fate in the embryonic ectoderm was studied by analyzing the distribution of graft-derived cells in the chimaeric embryo following grafting of wheat germ agglutinin--gold-labelled cells and culturing primitive-streak-stage mouse embryos. Embryonic ectoderm in the anterior region of the egg cylinder contributes to the neuroectoderm of the prosencephalon and mesencephalon. Cells in the distal lateral region give rise to the neuroectoderm of the rhombencephalon and the spinal cord. Embryonic ectoderm at the archenteron and adjacent to the middle region of the primitive streak contributes to the neuroepithelium of the spinal cord. The proximal-lateral ectoderm and the ectodermal cells adjacent to the posterior region of the primitive streak produce the surface ectoderm, the epidermal placodes and the cranial neural crest cells. Some labelled cells grafted to the anterior midline are found in the oral ectodermal lining, whereas cells from the archenteron are found in the notochord. With respect to mesodermal tissues, ectoderm at the archenteron and the distal-lateral region of the egg cylinder gives rise to rhombencephalic somitomeres, and the embryonic ectoderm adjacent to the primitive streak contributes to the somitic mesoderm and the lateral mesoderm. Based upon results of this and other grafting studies, a map of prospective ectodermal tissues in the embryonic ectoderm of the full-streak-stage mouse embryo is constructed.  相似文献   

10.
Stanniocalcin (STC) is present throughout vertebrates, including humans, but a structure for STC has not been identified in animals that evolved before bony fish. The origin of this pleiotropic hormone known to regulate calcium is not clear. In the present study, we have cloned three stanniocalcins from two invertebrates, the tunicate Ciona intestinalis and the amphioxus Branchiostoma floridae. Both species are protochordates with the tunicates as the closest living relatives to vertebrates. Amphioxus are basal to both tunicates and vertebrates. The genes and predicted proteins of tunicate and amphioxus share several key structural features found in all previously described homologs. Both the invertebrate and vertebrate genes have four conserved exons. The predicted length of the single pro-STC in Ciona is 237 amino acids and the two pro-hormones in amphioxus are 207 and 210 residues, which is shorter than human pro-STCs at 247 and 302 residues due to expansion of the C-terminal region in vertebrate forms. The conserved pattern of 10 cysteines in all chordate STCs is crucial for identification as amphioxus and tunicate amino acids are only 14-23% identical with human STC1 and STC2. The 11th cysteine, which is the cysteine shown to form a homodimer in vertebrates, is present only in amphioxus STCa, but not in amphioxus STCb or tunicate STC, suggesting the latter two are monomers. The expression of stanniocalcin in Ciona is widespread as shown by RT-PCR and by quantitative PCR. The latter method shows that the highest amount of STC mRNA is in the heart with lower amounts in the neural complex, branchial basket, and endostyle. A widespread distribution is present also in mammals and fish for both STC1 and STC2. Stanniocalcin is a presumptive regulator of calcium in both Ciona and amphioxus, although the structure of a STC receptor remains to be identified in any organism. Our data suggest that amphioxus STCa is most similar to the common ancestor of vertebrate STCs because it has an 11th cysteine necessary for dimerization, an N-glycosylation motif, although not the canonical one in vertebrate STCs, and similar gene organization. Tunicate and amphioxus STCs are more similar in structure to vertebrate STC1 than to vertebrate STC2. The unique features of STC2, including 14 instead of 11 cysteines and a cluster of histidines in the C-terminal region, appear to be found exclusively in vertebrates.  相似文献   

11.
The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.  相似文献   

12.
Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactory/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved from pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrates and tunicates.  相似文献   

13.
14.
The amphioxus genome has a single Delta gene (AmphiDelta) encoding a protein 766 amino acids long. Comparison of Delta proteins of amphioxus and other animals indicates that AmphiDelta retains features of a basal bilaterian Delta protein--in having nine epidermal growth factor (EGF) repeats and also in having characteristic numbers of amino acids separating successive cysteines between and within EGF repeats. During development, AmphiDelta is expressed in the forming somites, in some regions of pharyngeal endoderm, and in cells (presumably differentiating neurons) scattered in both the neural plate and ectoderm. Expression is strongly associated with cells initiating movements to separate themselves from parent epithelia, either en masse by evagination (endoderm and mesoderm) or by delamination as isolated cells (ectoderm). The AmphiDelta-expressing cells delaminating from the ectoderm apparently migrate beneath it as they begin differentiating into probable sensory neurons, suggesting a scenario for the evolutionary origin of the placode-derived neurons of vertebrate cranial ganglia.  相似文献   

15.
Amphioxus has neither elaborated brains nor definitive sensory organs, so that the two may have evolved in a mutually affecting manner and given rise to the forms seen in extant vertebrates. Clarifying the developmental and functional aspects of the amphioxus sensory system is thus pivotal for inferring the early evolution of vertebrates. Morphological studies have identified and classified amphioxus sensory cells; however, it is completely unknown whether the morphological classification makes sense in functional and evolutionary terms. Molecular markers, such as gene expression, are therefore indispensable for investigating the developmental and functional aspects of amphioxus sensory cells. This article reviews recent molecular studies on amphioxus sensory cells. Increasing evidence shows that the non-neural ectoderm of amphioxus can be subdivided into molecularly distinct subdomains by the combinatorial code of developmental cues involving the RA-dependent Hox code, suggesting that amphioxus epithelial sensory cells developed along positional information. This study focuses particularly on research involving the molecular phylogeny and expression of the seven-transmembrane, G protein-coupled receptor (GPCR) genes and discusses the usefulness of this information for characterizing the sensory cells of amphioxus.  相似文献   

16.
As a sister group to Bilateria, Cnidaria is important for understanding early nervous system evolution. Here we examine neural development in the anthozoan cnidarian Nematostella vectensis in order to better understand whether similar developmental mechanisms are utilized to establish the strikingly different overall organization of bilaterian and cnidarian nervous systems. We generated a neuron-specific transgenic NvElav1 reporter line of N. vectensis and used it in combination with immunohistochemistry against neuropeptides, in situ hybridization and confocal microscopy to analyze nervous system formation in this cnidarian model organism in detail. We show that the development of neurons commences in the ectoderm during gastrulation and involves interkinetic nuclear migration. Transplantation experiments reveal that sensory and ganglion cells are autonomously generated by the ectoderm. In contrast to bilaterians, neurons are also generated throughout the endoderm during planula stages. Morpholino-mediated gene knockdown shows that the development of a subset of ectodermal neurons requires NvElav1, the ortholog to bilaterian neural elav1 genes. The orientation of ectodermal neurites changes during planula development from longitudinal (in early-born neurons) to transverse (in late-born neurons), whereas endodermal neurites can grow in both orientations at any stage. Our findings imply that elav1-dependent ectodermal neurogenesis evolved prior to the divergence of Cnidaria and Bilateria. Moreover, they suggest that, in contrast to bilaterians, almost the entire ectoderm and endoderm of the body column of Nematostella planulae have neurogenic potential and that the establishment of connectivity in its seemingly simple nervous system involves multiple neurite guidance systems.  相似文献   

17.
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.  相似文献   

18.
Gene-regulatory interactions in neural crest evolution and development   总被引:2,自引:0,他引:2  
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest.  相似文献   

19.
The development of phenoloxidase during amphioxus embryogenesis was spectrophotometrically and histochemically studied for the first time in the present study. It was found that (1) PO activity initially appeared in the general ectoderm including the neural ectoderm and the epidermal ectoderm at the early neurula stage but not in the mesoderm or the endoderm, and (2) PO activity disappeared in the neural plate cells but remained unchanged in the epidermal cells when the neural plate was morphologically quite distinct from the rest of the ectoderm. It is apparent that PO could serve as a marker enzyme for differentiation of the neural ectoderm from the epidermal ectoderm during embryonic development of amphioxus.  相似文献   

20.
In the developing vertebrate nervous system, both neural crest and sensory neurons form at the boundary between non-neural ectoderm and the neural plate. From an in situ hybridization based expression analysis screen, we have identified a novel zebrafish mutation, narrowminded (nrd), which reduces the number of early neural crest cells and eliminates Rohon-Beard (RB) sensory neurons. Mosaic analysis has shown that the mutation acts cell autonomously suggesting that nrd is involved in either the reception or interpretation of signals at the lateral neural plate boundary. Characterization of the mutant phenotype indicates that nrd is required for a primary wave of neural crest cell formation during which progenitors generate both RB sensory neurons and neural crest cells. Moreover, the early deficit in neural crest cells in nrd homozygotes is compensated later in development. Thus, we propose that a later wave can compensate for the loss of early neural crest cells but, interestingly, not the RB sensory neurons. We discuss the implications of these findings for the possibility that RB sensory neurons and neural crest cells share a common evolutionary origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号