首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heme chaperone CcmE is a novel protein that binds heme covalently via a histidine residue as part of its essential function in the process of cytochrome c biogenesis in many bacteria as well as plant mitochondria. In the continued absence of a structure of the holoform of CcmE, identification of the heme ligands is an important step in understanding the molecular function of this protein and the role of covalent heme binding to CcmE during the maturation of c-type cytochromes. In this work, we present spectroscopic data that provide insight into the ligation of the heme iron in the soluble domain of CcmE from Escherichia coli. Resonance Raman spectra demonstrated that one of the heme axial ligands is a histidine residue and that the other is likely to be Tyr134. In addition, the properties of the heme resonances of the holo-protein as compared with those of a form of CcmE with non-covalently bound heme provide evidence for the modification of one of the heme vinyl side chains by the protein, most likely the 2-vinyl group.  相似文献   

2.
Biogenesis of c-type cytochromes requires the covalent attachment of heme to the apoprotein. In Escherichia coli, this process involves eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE binds heme covalently and transfers it to apocytochromes c in the presence of other Ccm proteins. CcmC is necessary and sufficient to incorporate heme into CcmE. Here, we report that the CcmC protein directly interacts with heme. We further show that CcmC co-immunoprecipitates with CcmE. CcmC contains two conserved histidines and a signature sequence, the so-called tryptophan-rich motif, which is the only element common to cytochrome c maturation proteins of bacteria, archae, plant mitochondria, and chloroplasts. We report that mutational changes of these motifs affecting the function of CcmC in cytochrome c maturation do not influence heme binding of CcmC. However, the mutants are defective in the CcmC-CcmE interaction, suggesting that these motifs are involved in the formation of a CcmC-CcmE complex. We propose that CcmC, CcmE, and heme interact directly with each other, establishing a periplasmic heme delivery pathway for cytochrome c maturation.  相似文献   

3.
CcmD is a small membrane protein involved in heme delivery to the heme chaperone CcmE during cytochrome c maturation. Here we show that it physically interacts with CcmE and CcmC, another essential component of the heme delivery system. We demonstrate the formation of a ternary complex consisting of CcmCDE. A deletion analysis of individual domains revealed that the central hydrophobic domain is essential for its function. Moreover, the C-terminal, cytoplasmic domain seems to require a net positive charge to be functional. Our topology analysis indicates that CcmD is an integral interfacial membrane protein with its N and C termini extruding into the cytoplasmic side of the membrane. Interactions of CcmD with either ferrochelatase, the last heme biosynthetic enzyme, or directly with heme were not detectable. We postulate a function for CcmD in protein-protein interaction or membrane protein assembly required for the heme delivery process.  相似文献   

4.
Mouse capping enzyme (Mce1) consists of two functional domains: the amino-terminal triphosphatase domain and the carboxyl-terminal guanylyltransferase (GTase) domain. The bifunctional Mce1 gene encodes 597 a.a. with a molecular weight approximately 68 kDa. Mce1 cDNA is located on chromosome 4A4 approximately 4A5 and is composed of 17 exons. To functionally characterize the C-terminus of Mce1, we generated four truncated proteins with 12, 30, 37, or 60 a.a. deletions from the C-terminus of either the wild type (Mce1) or the isolated GTase domain (211-597), respectively. Plasmid shuffling experiment with Saccharomyces cerevisiae GTase subunit gene CEG1 null mutant demonstrated that deletion mutants 211-567 and 211-585 were able to support cell viability in the presence of 5-fluoroorotic acid, whereas 211-537 and 211-560 were not. Consistent with the yeast genetic study, both 211-567 and 211-585 had significant GTase activity in vitro, while 211-537 and 211-560 that were only detected in the insoluble fraction in the bacterial expression system, were completely inactive. Overall, both in vivo and in vitro studies indicate that the functional domain of Mce1 is between a.a. 211 and 567, and the heptapeptide sequence between 561 and 567 may play an important role in the enzyme activity.  相似文献   

5.
Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.  相似文献   

6.
We have altered the N terminus of cytochrome f by site-directed mutagenesis of the chloroplast petA gene in Chlamydomonas reinhardtii. We have replaced the tyrosine residue, Tyr(32), located immediately downstream of the processing site Ala(29)-Gln(30)-Ala(31) by a proline. Tyr(32) is the N terminus of the mature protein and serves as the sixth axial ligand to the heme iron. This mutant, F32P, accumulated different forms of holocytochrome f and assembled them into the cytochrome b(6)f complex. The strain was able to grow phototrophically. Our results therefore contradict a previous report (Zhou, J., Fernandez-Velasco, J. G., and Malkin, R. (1996) J. Biol. Chem. 271, 1-8) that a mutation, considered to be identical to the mutation described here, prevented cytochrome b(6)f assembly. A comparative functional characterization of F32P with F29L-31L, a site-directed processing mutant in which we had replaced the processing site by a Leu(29)-Gln(30)-Leu(31) sequence (2), revealed that both mutants accumulate high spin cytochrome f, with an unusual orientation of the heme and low spin cytochrome f with an alpha-band peak at 552 nm. Both hemes have significantly lower redox potentials than wild type cytochrome f. We attribute the high spin form to uncleaved pre-holocytochrome f and the low spin form to misprocessed forms of cytochrome f that were cleaved at a position different from the regular Ala(29)-Gln-Ala(31) motif. In contrast to F29L-31L, F32P displayed a small population of functional cytochrome f, presumably cleaved at Ala(29), with characteristics close to those of wild type cytochrome f. The latter form would account for cytochrome b(6)f turnover and photosynthetic electron transfer that sustain phototrophic growth of F32P.  相似文献   

7.
8.
CcmE is a heme chaperone active in the cytochrome c maturation pathway of Escherichia coli. It first binds heme covalently to strictly conserved histidine H130 and subsequently delivers it to apo-cytochrome c. The recently solved structure of soluble CcmE revealed a compact core consisting of a beta-barrel and a flexible C-terminal domain with a short alpha-helical turn. In order to elucidate the function of this poorly conserved domain, CcmE was truncated stepwise from the C terminus. Removal of all 29 amino acids up to crucial histidine 130 did not abolish heme binding completely. For detectable transfer of heme to type c cytochromes, only one additional residue, D131, was required, and for efficient cytochrome c maturation, the seven-residue sequence (131)DENYTPP(137) was required. When soluble forms of CcmE were expressed in the periplasm, the C-terminal domain had to be slightly longer to allow detection of holo-CcmE. Soluble full-length CcmE had low activity in cytochrome c maturation, indicating the importance of the N-terminal membrane anchor for the in vivo function of CcmE.  相似文献   

9.
10.
Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n = 1-4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n = 1-3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL.  相似文献   

11.
A recombinant fusion protein combining the mitochondrial ADP/ATP carrier (Anc2p) and the iso-1-cytochrome c (Cyc1p), both from Saccharomyces cerevisiae, has been genetically elaborated with the aim of increasing the polar surface area of the carrier to facilitate its crystallization. The gene encoding the his-tagged fusion protein was expressed in yeast under the control of the regulatory sequences of ScANC2. The chimeric carrier, Anc2-Cyc1(His6)p, was able to restore growth on a non-fermentable carbon source of a yeast strain devoid of functional ADP/ATP carrier, which demonstrated its transport activity. The kinetic exchange properties of Anc2-Cyc1(His6)p and the wild type his-tagged carrier Anc2(His6)p were very similar. However, Anc2-Cyc1(His6)p restored cell growth less efficiently than Anc2(His6)p which correlates with the lower amount found in mitochondria. Purification of Anc2-Cyc1(His6)p in complex with carboxyatractyloside (CATR), a high affinity inhibitor of ADP/ATP transport, was achieved by combining ion-exchange chromatography and ion-metal affinity chromatography in the presence of LAPAO, an aminoxide detergent. As characterized by absorption in the visible range, heme was found to be present in isolated Anc2-Cyc1(His6)p, giving the protein a red color. Large-scale purification of Anc2-Cyc1(His6)p-CATR complex opens up novel possibilities for the use of crystallographic approaches to the yeast ADP/ATP carrier.  相似文献   

12.
Biogenesis of c-type cytochromes in alpha- and gamma-proteobacteria requires the function of a set of orthologous genes (ccm genes) that encode specific maturation factors. The Escherichia coli CcmE protein is a periplasmic heme chaperone. The membrane protein CcmC is required for loading CcmE with heme. By expressing CcmE (CycJ) from Bradyrhizobium japonicum in E. coli we demonstrated that heme is bound covalently to this protein at a strictly conserved histidine residue. The B. japonicum homologue can transfer heme to apocytochrome c in E. coli, suggesting that it functions as a heme chaperone. CcmC (CycZ) from B. japonicum expressed in E. coli was capable of inserting heme into CcmE.  相似文献   

13.
CcmH (cytochromes c maturation protein H) is an essential component of the assembly line necessary for the maturation of c-type cytochromes in the periplasm of Gram-negative bacteria. The protein is a membrane-anchored thiol-oxidoreductase that has been hypothesized to be involved in the recognition and reduction of apocytochrome c, a prerequisite for covalent heme attachment. Here, we present the 1.7A crystal structure of the soluble periplasmic domain of CcmH from the opportunistic pathogen Pseudomonas aeruginosa (Pa-CcmH*). The protein contains a three-helix bundle, i.e. a fold that is different from that of all other thiol-oxidoreductases reported so far. The catalytic Cys residues of the conserved LRCXXC motif (Cys(25) and Cys(28)), located in a long loop connecting the first two helices, form a disulfide bond in the oxidized enzyme. We have determined the pK(a) values of these 2 Cys residues of Pa-CcmH* (both >8) and propose a possible mechanistic role for a conserved Ser(36) and a water molecule in the active site. The interaction between Pa-CcmH* and Pa-apocyt c(551) (where cyt c(551) represents cytochrome c(551)) was characterized in vitro following the binding kinetics by stopped-flow using a Trp-containing fluorescent variant of Pa-CcmH* and a dansylated peptide, mimicking the apocytochrome c(551) heme binding motif. The kinetic results show that the protein has a moderate affinity to its apocyt substrate, consistent with the role of Pa-CcmH as an intermediate component of the assembly line for c-type cytochrome biogenesis.  相似文献   

14.
Cytochromes c are characterized by the presence of a protoporphyrin IX group covalently attached to the polypeptide via one or two thioether bonds to Cys side chains. The heme attachment process, known as cytochrome c maturation, occurs posttranslationally in the periplasm (for bacterial cytochromes c) or in the mitochondrial intermembrane space (for eukaryotic cytochromes c) through a pathway dependent on the organism. It is demonstrated in this work that a mitochondrial cytochrome c expressed in Escherichia coli that undergoes maturation under control of the E. coli cytochrome c maturation factors achieves a native-like structure and stability. The recombinant protein is characterized spectroscopically (by circular dichroism (CD), absorption, and nuclear magnetic resonance (NMR) spectroscopy) and it is verified that the heme and its environment are indistinguishable from authentic horse cytochrome c. Mass spectrometry reveals that the recombinant protein is not acetylated at the N terminus, however, no significant effect on protein structure or stability is detected as a result.  相似文献   

15.
Functional characterization of the MENTAL domain   总被引:2,自引:0,他引:2  
Human metastatic lymph node (MLN) 64 is composed of two conserved regions. The amino terminus contains a conserved membrane-spanning MENTAL (MLN64 NH(2)-terminal) domain shared with an unique protein called MENTHO (MLN64 NH(2)-terminal domain homologue) and targets the protein to late endosome. The carboxyl-terminal domain is composed of a cholesterol binding steroidogenic acute regulatory-related lipid transfer domain exposed to the cytoplasm. MENTHO overexpression leads to the accumulation of enlarged endosomes. In this study, we show that MLN64 overexpression also induces the formation of enlarged endosomes, an effect that is probably mediated by the MENTAL domain. Using an in vivo photocholesterol binding assay, we find that the MENTAL domain of MLN64 is a cholesterol binding domain. Moreover, glutathione S-transferase pull-down or co-immunoprecipitation experiments demonstrate that this domain mediates homo- and hetero-interaction of MLN64 and MENTHO. In living cells, the expression of paired yellow fluorescent and cyan fluorescent fusion proteins show MENTHO homo-interaction and its interaction with MLN64. These data indicate that within late-endosomal membranes, MLN64 and MENTHO define discrete cholesterol-containing subdomains. The MENTAL domain might serve to maintain cholesterol at the membrane of late endosomes prior to its shuttle to cytoplasmic acceptor(s).  相似文献   

16.
Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunit-based anti-tuberculosis vaccine.  相似文献   

17.
We describe the design of Escherichia coli cells that synthesize a structurally perfect, recombinant cytochrome c from the Thermus thermophilus cytochrome c552 gene. Key features are (1) construction of a plasmid-borne, chimeric cycA gene encoding an Escherichia coli-compatible, N-terminal signal sequence (MetLysIleSerIleTyrAlaThrLeu AlaAlaLeuSerLeuAlaLeuProAlaGlyAla) followed by the amino acid sequence of mature Thermus cytochrome c552; and (2) coexpression of the chimeric cycA gene with plasmid-borne, host-specific cytochrome c maturation genes (ccmABCDEFGH). Approximately 1 mg of purified protein is obtained from 1 L of culture medium. The recombinant protein, cytochrome rsC552, and native cytochrome c552 have identical redox potentials and are equally active as electron transfer substrates toward cytochrome ba3, a Thermus heme-copper oxidase. Native and recombinant cytochromes c were compared and found to be identical using circular dichroism, optical absorption, resonance Raman, and 500 MHz 1H-NMR spectroscopies. The 1.7 A resolution X-ray crystallographic structure of the recombinant protein was determined and is indistinguishable from that reported for the native protein (Than, ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T, 1997, J Mol Biol 271:629-644). This approach may be generally useful for expression of alien cytochrome c genes in E. coli.  相似文献   

18.
The RecB subunit of the Escherichia coli RecBCD enzyme has been shown in previous work to have two domains: an N-terminal 100 kDa domain with ATP-dependent helicase activity, and a C-terminal 30 kDa domain. The 30 kDa domain had nuclease activity when linked to a heterologous DNA binding protein, but by itself it appeared unable to bind DNA and lacked detectable nuclease activity. We have expressed and isolated this 30 kDa domain, called RecB(N), and show that it does have nuclease activity detectable at high protein concentration in the presence of polyethylene glycol, added as a molecular crowding agent. The activity is undetectable in a mutant RecB(N)protein in which an aspartate residue has been changed to alanine. Structural analysis of the wild-type and mutant RecB(N)proteins by second derivative absorbance and circular dichroism spectroscopy indicates that both are folded proteins with very similar secondary and tertiary structures. The results show that the Asp-->Ala mutation has not caused a significant structural change in the isolated domain and they support the conclusion that the C-terminal domain of RecB has the sole nuclease active site of RecBCD.  相似文献   

19.
 Di-heme Pseudomonas stutzeri cytochrome c 4 has been characterized by electronic absorption and resonance Raman spectroscopies in the ferric and ferrous forms at pH 7.5 and at room temperature. The data indicate that the two hemes are inequivalent. It is proposed that the N-terminal contains a more relaxed heme as a consequence of the relative orientation of the methionine and histidine ligands with respect to the N-Fe-N directions of the heme plane. This causes a weakening of the Fe-S bond with concomitant partial dissociation of the methionine and the formation of an Fe-aquo bond. Heme group relaxation is further accompanied by less distortion of the heme group than that associated with cytochrome c, expansion of the "core" and a negative shift of the redox potential. Received: 17 December 1996 / Accepted: 6 March 1997  相似文献   

20.
Cytochromes of the c -type function on the outer side of the cytoplasmic membrane in bacteria where they also are assembled from apo-cytochrome polypeptide and haem. Two distinctly different systems for cytochrome c maturation are found in bacteria. System I present in Escherichia coli has eight to nine different Ccm proteins. System II is found in Bacillus subtilis and comprises four proteins: CcdA, ResA, ResB and ResC. ResB and ResC are poorly understood polytopic membrane proteins required for cytochrome c synthesis. We have analysed these two B. subtilis proteins produced in E. coli and in the native organism. ResB is shown to bind protohaem IX and haem is found covalently bound to residue Cys-138. Results in B. subtilis suggest that also ResC can bind haem. Our results complement recent findings made with Helicobacte r CcsBA supporting the hypothesis that ResBC as a complex translocates haem by attaching it to ResB on the cytoplasmic side of the membrane and then transferring it to an extra-cytoplasmic location in ResC, from where it is made available to the apo-cytochromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号