首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminases (TGs) are Ca2+-dependent enzymes that catalyze a variety of modifications of glutaminyl (Q) residues. In the brain, these modifications include the covalent attachment of a number of amine-bearing compounds, including lysyl (K) residues and polyamines, which serve to either regulate enzyme activity or attach the TG substrates to biological matrices. Aberrant TG activity is thought to contribute to Alzheimer disease, Parkinson disease, Huntington disease, and supranuclear palsy. Strategies designed to interfere with TG activity have some benefit in animal models of Huntington and Parkinson diseases. The following review summarizes the involvement of TGs in neurodegenerative diseases and discusses the possible use of selective inhibitors as therapeutic agents in these diseases.  相似文献   

2.
Transglutaminase type 2 (TG2; also known as G(h)) is a multifunctional protein involved in diverse cellular processes. It has two well characterized enzyme activities: receptor-stimulated signaling that requires GTP binding and calcium-activated transamidation or cross-linking that is inhibited by GTP. In addition to the GDP binding residues identified from the human TG2 crystal structure (Liu, S., Cerione, R. A., and Clardy, J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 2743-2747), we have previously implicated Ser171 in GTP binding, as binding is lost with glutamate substitution (Iismaa, S. E., Wu, M.-J., Nanda, N., Church, W. B., and Graham, R. M. (2000) J. Biol. Chem. 275, 18259-18265). Here, we have shown that alanine substitution of homologous residues in rat TG2 (Phe174 in the core domain or Arg476, Arg478, or Arg579 in barrel 1) does not affect TG activity but reduces or abolishes GTP binding and GTPgammaS inhibition of TG activity in vitro, indicating that these residues are important in GTP binding. Alanine substitution of Ser171 does not impair GTP binding, indicating this residue does not interact directly with GTP. Arg579 is particularly important for GTP binding, as isothermal titration calorimetry demonstrated a 100-fold reduction in GTP binding affinity by the R579A mutant. Unlike wild-type TG2 or its S171E or F174A mutants, which are sensitive to both trypsin and mu-calpain digestion, R579A is inherently more resistant to mu-calpain, but not trypsin, digestion, indicating reduced accessibility and/or flexibility of this mutant in the region of the calpain cleavage site(s). Basal TG activity of intact R579A stable SH-SY5Y neuroblastoma cell transfectants was slightly increased relative to wild-type transfectants and, in contrast to the TG activity of the latter, was further stimulated by muscarinic receptor-activated calcium mobilization. Thus, loss of GTP binding sensitizes TG2 to intracellular calcium concentrations. These findings are consistent with the notion that intracellularly, under physiological conditions, TG2 is maintained largely as a latent enzyme, its calcium-activated cross-linking activity being suppressed allosterically by guanine nucleotide binding.  相似文献   

3.
4.
Transglutaminases (TGs) are a family of enzymes that catalyze Ca(2+)-dependent post-translational modification of proteins by introducing protein-protein crosslinks (between specific glutamine and lysine residues), amine incorporation, and site-specific deamidation. In this study, new amine acceptor protein substrates of TG were isolated from rat liver extract and identified using 5-(biotinamido) pentylamine, a biotinylated primary amine substrate, as a probe. TG protein substrate candidates labeled with biotin by endogenous TG activity were isolated and recovered by avidin column chromatography. Proteins with molecular masses of 40, 42, and 45 kDa were the main components of the labeled proteins. Determination of their partial amino acid sequences and immunoblotting analyses were done to identify them. The 45-kDa protein was identical with betaine-homocysteine S-methyltransferase (EC 2.2.2.5), which was identified in our previous study. The 40- and 42-kDa proteins were identified as arginase-I (EC 3.5.3.1) and fructose-1,6-bisphosphatase (EC 3.1.3.11) respectively. TG catalyzed incorporation of 5-(biotinamido) pentylamine into both arginase-I and fructose-1,6-bisphosphatase purified from rat liver was confirmed in vitro. These results suggest that these two enzymes are the new protein substrate candidates of TG and that they can be modified post-translationally by cellular TG.  相似文献   

5.
Immature cells of etiolated apices of sprouts growing from Helianthus tuberosus (H. t.) tubers showed Ca2+-dependent transglutaminase (TG, EC 2.3.2.13) activity on fibronectin (more efficiently) and dimethylcasein as substrates. Three main TG bands of about 85, 75 and 58 kDa were isolated from the 100,000×g apices supernatant through a DEAE-cellulose column at increasing NaCl concentrations and immuno-identified by anti-TG K and anti-rat prostate gland TG antibodies. These three fractions had catalytic activity as catalyzed polyamine conjugation to N-benzyloxycarbonyl-L-γ-glutaminyl-L-leucine (Z-L-Gln-L-Leu) and the corresponding glutamyl-derivatives were identified. The amino acid composition of these TG proteins was compared with those of several sequenced TGs of different origin. The composition of the two larger bands presented great similarities with annotated TGs; in particular, the 75 kDa form was very similar to mammalian inactive EPB42. The 58 kDa form shared a low similarity with other TGs, including a maize sequence of similar molecular mass, which, however, did not present the catalytic triad in the position of all annotated TGs. A 3D model of the H. t. TGs was built adopting TG2 as template. These novel plant TGs are hypothesized to be constitutive and discussed in relation to their possible roles in immature cells. These data suggest that in plants, multiple TG forms are active in the same organ and that plant and animal enzymes probably are very close not only for their catalytic activity but also structurally.  相似文献   

6.
Deasey S  Grichenko O  Du S  Nurminskaya M 《Amino acids》2012,42(2-3):1065-1075
We have characterized the protein cross-linking enzyme transglutaminase (TGs) genes in zebrafish, Danio rerio, based on the analysis of their genomic organization and phylogenetics. Thirteen zebrafish TG genes (zTGs) have been identified, of which 11 show high homology to only 3 mammalian enzymes: TG1, TG2 and FXIIIa. No zebrafish homologues were identified for mammalian TGs 3-7. Real-time PCR analysis demonstrated distinct temporal expression profiles for zTGs in larvae and adult fish. Analysis by in situ hybridization revealed restricted expression of zTG2b and zFXIIIa in skeletal elements, resembling expression of their mammalian homologues in osteo-chondrogenic cells. Mammalian TG2 and FXIIIa have been implicated in promoting osteoblast differentiation and bone mineralization in vitro, however, mouse models lacking either gene have no skeletal phenotype likely due to a compensation effect. We show in this study that mineralization of the newly formed vertebrae is significantly reduced in fish grown for 5?days in the presence of TG inhibitor KCC-009 added at 3–5?days post fertilization. This treatment reduces average vertebrae mineralization by 30%, with complete inhibition in some fish, and no effect on the overall growth and vertebrae number. This is the first in vivo demonstration of the crucial requirement for the TG-catalyzed cross-linking activity in bone mineralization.  相似文献   

7.
Transglutaminases (TGs) are widely distributed enzymes that catalyze posttranslational modification of proteins by Ca(2+)-dependent cross-linking reactions. The family members of TGs participate in many significant processes of biological functions such as tissue regeneration, cell differentiation, apoptosis, and certain pathologies. A novel technique for TG activity assay was developed in this study. It was based on the rapid capturing, fluorescence quenching, and fast separation of the unreacted fluorescent molecules from the macromolecular product with magnetic dextran-coated charcoal. As few as 3 ng of guinea pig liver transglutaminase (gpTG) could be detected by the method; activities of 96 TG samples could be measured within an hour. The K(m) of gpTG determined by this method for monodansylcadaverine (dansyl-CAD) and N, N-dimethylcasein was 14 and 5 muM, respectively. A typical competitive inhibition pattern of cystamine on dansyl-CAD for gpTG activity was also demonstrated. The application of this technique is not limited to the use of dansyl-CAD as the fluorescent substrate of TG; other small fluor-labeled TG substrates may substitute dansyl-CAD. Finally, this method is rapid, highly sensitive, and inexpensive. It is suitable not only for high-throughput screening of enzymes or enzyme inhibitors but also for enzyme kinetic analysis.  相似文献   

8.
Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. The TG enzymes are also capable of catalyzing other reactions important for cell viability. The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified. "Tissue" TG (TG2), a member of the TG family of enzymes, has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology: i.e. celiac disease (CD). TG activity has also been hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases, including neurodegenerative diseases, which are often associated with CD. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, supranuclear palsy, Huntington's disease and other recently identified polyglutamine diseases, are characterized, in part, by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains. In this review, we discuss the physio-pathological role of TG-catalyzed reactions, with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases.  相似文献   

9.
Transglutaminases (TGs) are a family of enzymes that catalyze Ca2+-dependent post-translational modification of proteins by introducing protein-protein crosslinks (between specific glutamine and lysine residues), amine incorporation, and site-specific deamidation. In this study, new amine acceptor protein substrates of TG were isolated from rat liver extract and identified using 5-(biotinamido) pentylamine, a biotinylated primary amine substrate, as a probe. TG protein substrate candidates labeled with biotin by endogenous TG activity were isolated and recovered by avidin column chromatography. Proteins with molecular masses of 40, 42, and 45 kDa were the main components of the labeled proteins. Determination of their partial amino acid sequences and immunoblotting analyses were done to identify them. The 45-kDa protein was identical with betaine-homocysteine S-methyltransferase (EC 2.2.2.5), which was identified in our previous study. The 40- and 42-kDa proteins were identified as arginase-I (EC 3.5.3.1) and fructose-1,6-bisphosphatase (EC 3.1.3.11) respectively. TG catalyzed incorporation of 5-(biotinamido) pentylamine into both arginase-I and fructose-1,6-bisphosphatase purified from rat liver was confirmed in vitro. These results suggest that these two enzymes are the new protein substrate candidates of TG and that they can be modified post-translationally by cellular TG.  相似文献   

10.
The extracellular transglutaminases (TGs) in eukaryotes are responsible for the post-translational modification of proteins through different reactions, cross-linking being the best known. In higher plants, extracellular TG appears to be involved in roles similar to those performed by the mammalian counterparties. Since TGs are pleiotropic enzymes, to fully understand the role of plant enzymes it is possible to compare them with animal TGs, the most studied being TG of type 2 (TG2). The extracellular form of TG2 stabilizes the matrix and modulates the interaction of the integrin-fibronectin receptor, causing the adhesion of cells to the extracellular matrix; TG2 plays a role also in the pathogenicity. Extracellular TGs have also been identified in the cell wall of fungi, such as Candida and Saccharomyces, where they cross-link structural glycoproteins, and in Phytophthora, where they are involved in pathogenicity; in the alga Chlamydomonas, TGs link polyamines to glycoproteins thereby favouring the strengthening of cell wall. In higher plants, TG localized in the cell wall of flower petals appears to be involved in the structural reinforcement as well as senescence and cell death of the flower corolla. In the pollen cell wall an extracellular TG co-localizes with substrates and cross-linked products; it is required for the apical growth of pollen tubes. The pollen TG is also secreted into the extracellular matrix possibly allowing the migration of pollen tubes during fertilisation. Although pollen TGs seem to be secreted via vesicles transported along actin filaments, a different mechanism from the classical ER-Golgi pathway is possible, similar to TG2.  相似文献   

11.
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca2+-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.  相似文献   

12.
13.
Transglutaminase 2 (TG2) is secreted by a non-classical pathway into the extracellular space, where it has several activities pertinent to fibronectin (FN), including binding to the gelatin-binding domain of FN and acting as an integrin co-receptor. Glutamines in the N-terminal tail of FN are known to be susceptible to transamidation by both TG2 and activated blood coagulation factor XIII (FXIIIa). We used immunoblotting, limited proteolysis, and mass spectrometry to localize glutamines within FN that are subject to TG2-catalyzed incorporation of dansylcadaverine in comparison to residues modified by FXIIIa. Such analysis of plasma FN indicated that Gln-3, Gln-7, and Gln-9 in the N-terminal tail and Gln-246 of the linker between fifth and sixth type I modules ((5)F1 and (6)F1) are transamidated by both enzymes. Only minor incorporation of dansylcadaverine was detected elsewhere. Labeling of C-terminally truncated FN constructs revealed efficient TG2- or FXIIIa-catalyzed dansylcadaverine incorporation into the N-terminal residues of constructs as small as the 29-kDa fragment that includes (1-5)F1 and lacks modules from the adjacent gelatin-binding domain. However, when only (1-3)F1 were present, dansylcadaverine incorporation into the N-terminal residues of FN was lost and instead was in the enzymes, near the active site of TG2 and terminal domains of FXIIIa. Thus, these results demonstrate that FXIIIa and TG2 act similarly on glutamines at either end of (1-5)F1 and transamidation specificity of both enzymes is achieved through interactions with the intact 29K fragment.  相似文献   

14.
Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.  相似文献   

15.
Transglutaminase (TG) function facilitates several vascular processes and diseases. Although many of these TG-dependent vascular processes have been ascribed to the function of TG2, TG2 knockout mice have a mild vascular phenotype. We hypothesized that TGs besides TG2 exist and function in the vasculature. Biotin-pentylamide incorporation, a measure of general TG activity, was similar in wild-type and TG2 knockout mouse aortae, and the general TG inhibitor cystamine reduced biotin-pentylamine incorporation to a greater extent than the TG2-specific inhibitor Z-DON, indicating the presence of other functional TGs. Additionally, 5-hydroxytryptamine-induced aortic contraction, a TG-activity-dependent process, was decreased to a greater extent by general TG inhibitors vs. Z-DON (maximum contraction: cystamine = abolished, monodansylcadaverine = 28.6 ± 14.9%, and Z-DON = 60.2 ± 15.2% vehicle), providing evidence for the importance of TG2-independent activity in the vasculature. TG1, TG2, TG4, and Factor XIII (FXIII) mRNA in rat aortae and vena cavae was detected by RT-PCR. Western analysis detected TG1 and TG4, but not FXIII, in rat aortae and vena cavae and in TG2 knockout and wild-type mouse aortae. Immunostaining confirmed the presence of TG1, TG2, and TG4 in rat aortae and vena cavae, notably in smooth muscle cells; FXIII was absent. K5 and T26, FITC-labeled peptide substrates specific for active TG1 and TG2, respectively, were incorporated into rat aortae and vena cavae and wild-type, but not TG2 knockout, mouse aortae. These studies demonstrate that TG2-independent TG activity exists in the vasculature and that TG1 and TG4 are expressed in vascular tissues.  相似文献   

16.
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.  相似文献   

17.
Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. Considerable and intense progress has been made in the understanding of the chemistry, molecular biology and cell biology of TGs. The knowledge that very different physiological and pathological processes are dependent on the presence of adequate levels of these cross-linking enzymes and on the amount of both free and protein-conjugated polyamines by TG, has generated an incredible amount of original research and review articles. It is clear that TG-mediated reactions are essential for some biological processes, such as blood coagulation, skin barrier formation and extracellular matrix assembly, but may also be involved in pathogenetic mechanisms responsible for several human diseases, such as cancer, AIDS, neurodegenerative disorders, celiac disease, and eye lens opacification. We present here a comprehensive review of recent insights into the pathophysiology of TGs related to their protein cross-linking activity.  相似文献   

18.
Abstract

Transglutaminases (TGs) are a multigenic family of calcium-dependent protein cross-linking enzymes, which are present in animal and plant cells. We have previously reported the presence of TGs in the cytosol and, more recently, in the cell wall of Malus domestica pollen, where it may be involved in pollen germination and pollen–stylar interactions. In this report we describe a simple method for the in situ visualisation of TG activity in germinating pollen. The method is based on the incorporation, mediated by pollen TG, of a fluorescently labelled exogenous diamine substrate of TG (fluorescein-cadaverine) into endogenous pollen substrates. Following the in situ TG activity reaction, the presence of cross-linked pollen proteins was visualised in fixed specimens of germinated pollen by laser confocal microscopy. Our data indicate the presence of TG cross-linking activity mainly at the apical part of the pollen tube, in the region proximal to the grain, and in the pollen grain itself. In planta, the products of this activity may provide strength to the pollen tube migrating through the style.  相似文献   

19.
Transglutaminases(TGs;E.C.2.3.2.13)are ubiquitous enzymes which catalyze post-translational modifications of proteins.TGs and TG-catalyzed post-translational modifications of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases.In particular,TG activity has been hypothesized to also be involved also in the molecular mechanisms responsible for human neurodegenerative diseases.In support of this hypothesis,Basso et al recently demonstrated that the TG inhibition protects against oxidative stress-induced neuronal death,suggesting that multiple TG isoforms participate in oxidative stress-induced cell death and that nonselective TG isoform inhibitors will be most effective in fighting oxidative death in neurological disorders.In this commentary,we discuss the possible molecular mechanisms by which TG activity could be involved in the pathogenesis of neurological diseases,with particular reference to neurodegenerative diseases,and the possible involvement of multiple TG isoforms expressed simultaneously in the nervous system in these diseases.Moreover,therapeutic strategies based on the use of selective or nonselective TG inhibitors for the amelioration of thesymptoms of patients with neurological diseases,characterized by aberrant TG activity,are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号