首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of atrial natriuretic factor (ANF) on phosphoinositide hydrolysis were examined in preparations of cultured bovine aortic smooth muscle cells. In homogenates or particulate fractions from cultured bovine aortic smooth muscle cells, ANF and atriopeptin I increased the formation of inositol phosphates and GTPase activity. The effects on inositol phosphates were markedly enhanced with guanosine 5'[gamma-thio]triphosphate. Both atrial peptides also stimulated the formation of diacylglycerol in intact cultured cells. In these experiments, atriopeptin I was about 10-fold more potent than ANF. These studies indicate that atrial peptides have stimulatory effects on phosphoinositide hydrolysis which are mediated through a guanine nucleotide regulatory protein. The greater potency of atriopeptin I on GTPase activity and the accumulation of inositol phosphates suggests that the nonguanylate cyclase-coupled receptor for ANF (ANF-R2) mediates the stimulatory effects of ANF on phosphoinositide hydrolysis through a guanine nucleotide regulatory protein.  相似文献   

2.
The guanine nucleotides guanosine 5'[beta, gamma-imido]triphosphate (Gpp[NH]p), guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S), GMP, GDP and GTP stimulated the hydrolysis of inositol phospholipids by a phosphodiesterase in rat cerebral cortical membranes. Addition of 100 microM-Gpp[NH]p to prelabelled membranes caused a rapid accumulation of [3H )inositol phosphates (less than 30 s) for up to 2 min. GTP gamma S and Gpp [NH]p caused a concentration-dependent stimulation of phosphoinositide phosphodiesterase with a maximal stimulation of 2.5-3-fold over control at concentrations of 100 microM. GMP was as effective as the nonhydrolysable analogues, but much less potent (EC50 380 microM). GTP and GDP caused a 50% stimulation of the phospholipase C at 100 microM and at higher concentrations were inhibitory. The adenine nucleotides App[NH]p and ATP also caused small stimulatory effects (64% and 29%). The guanine nucleotide stimulation of inositide hydrolysis in cortical membranes was selective for inositol phospholipids over choline-containing phospholipids. Gpp[NH]p stimulated the production of inositol trisphosphate and inositol bisphosphate as well as inositol monophosphate, indicating that phosphoinositides are substrates for the phosphodiesterase. EGTA (33 microM) did not prevent the guanine nucleotide stimulation of inositide hydrolysis. Calcium addition by itself caused inositide phosphodiesterase activation from 3 to 100 microM which was additive with the Gpp[NH]p stimulation. These data suggest that guanine nucleotides may play a regulatory role in the modulation of the activity of phosphoinositide phosphodiesterase in rat cortical membranes.  相似文献   

3.
The effect of adenosine on phosphoinositide hydrolysis was examined in 1321N1 human astrocytoma cells. Adenosine, L-N6-phenylisopropyladenosine (L-PIA), and 5'-(N-ethylcarboxamido)adenosine (NECA) inhibited histamine-stimulated accumulation of inositol phosphates in a concentration-dependent manner. The potency order of adenosine analogues for inhibition of inositol phosphate accumulation was L-PIA greater than adenosine greater than NECA, a finding indicating that A1-class adenosine receptors are involved in the inhibition. The reduction in inositol phosphate accumulation by L-PIA was blocked by an adenosine receptor antagonist, 8-phenyltheophylline. Stimulation of A1-class adenosine receptors inhibited isoproterenol-stimulated cyclic AMP accumulation as well as histamine-induced inositol phosphate accumulation. Both inhibitory effects were blocked by pretreatment of the cells with pertussis toxin [islet-activating protein (IAP)]. L-PIA also inhibited guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-stimulated accumulation of inositol phosphates in membrane preparations, and 8-phenyl-theophylline antagonized the inhibition. L-PIA could not inhibit GTP gamma S-induced accumulation of inositol phosphates in IAP-treated membranes. Gi/Go, purified from rabbit brain, inhibited GTP gamma S-stimulated accumulation of inositol phosphates in a concentration-dependent manner in membrane preparations. These results suggest that stimulation of A1-class adenosine receptors interacts with the IAP-sensitive G protein(s), resulting in the inhibitions of phospholipase C as well as adenylate cyclase in human astrocytoma cells.  相似文献   

4.
Schistosoma mansoni: characterization of phosphoinositide response.   总被引:1,自引:0,他引:1  
Signal transduction pathways may have important regulatory roles in cellular events in the human parasite Schistosoma mansoni. The presence of the phosphoinositide response in S. mansoni was examined by radiolabeling intact worms with 20 muCi of [3H]myoinositol for 24 hr and stimulating parasites with 25 mM NaF and 10 microM AlCl3 in the presence of 10 mM LiCl. Total inositol phosphates were increased within 2 min and maximal accumulation was achieved after 30 min. Similar results were seen with the non-hydrolyzable GTP analogues GTP gamma S and GppNHp while only minimal changes were detected with GMP. Neomycin inhibited NaF-induced inositol phosphate production. NaF stimulated a significant 3.6-fold increase of inositol phosphates in females compared to males. These data suggest that stimulation of guanine nucleotide-binding regulatory proteins activates phospholipase C resulting in production of inositol phosphates in S. mansoni.  相似文献   

5.
A technique of transient permeabilisation has been used to show that the introduction of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a non-hydrolysable analogue of GTP, into intact Swiss 3T3 fibroblasts stimulates phosphoinositide hydrolysis, cyclic AMP accumulation and the activation of c-fos and c-myc proto-oncogenes. Of a number of nucleotide triphosphates introduced into the cells, only GTP and its non-hydrolysable analogues activated inositol phosphate release, suggesting that this response is mediated by guanine nucleotide regulatory (G) protein(s). The data demonstrate that transient permeabilisation provides a method of examining the involvement of G-proteins in nuclear activation.  相似文献   

6.
The efficacy of muscarinic-receptor agonists for stimulation of inositol phosphate formation and Ca2+ mobilization in intact 1321N1 human astrocytoma cells is correlated with their capacity for formation of a GTP-sensitive high-affinity binding complex in membranes from these cells [Evans, Hepler, Masters, Brown & Harden (1985) Biochem. J. 232, 751-757]. These observations prompted the proposal that a guanine nucleotide regulatory protein serves to couple muscarinic receptors to the phospholipase C involved in phosphoinositide hydrolysis in 1321N1 cells. Inositol phosphate (InsP) formation was measured in a cell-free preparation from 1321N1 cells to provide direct support for this idea. The formation of InsP3, InsP2 and InsP1 was increased in a concentration-dependent manner (K0.5 approximately 5 microM) by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in washed membranes prepared from myo-[3H]inositol-prelabelled 1321N1 cells. Both GTP[S] and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) stimulated InsP formation by 2-3-fold over control; GTP, GDP and GMP were much less efficacious. Millimolar concentrations of NaF also stimulated the formation of inositol phosphates in membrane preparations from 1321N1 cells. In the presence of 10 microM-GTP[S], the muscarinic cholinergic-receptor agonist carbachol stimulated (K0.5 approximately 10 microM) the formation of InsP above that achieved with GTP[S] alone. The effect of carbachol was completely blocked by atropine. The order of potency of nucleotides for stimulation of InsP formation in the presence of 500 microM-carbachol was GTP[S] greater than p[NH]ppG greater than GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate Gi (the inhibitory guanine nucleotide regulatory protein), had no effect on InsP formation in the presence of GTP[S] or GTP[S] plus carbachol. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not Gi is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells.  相似文献   

7.
Incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4,5-bisphosphate (PIP2) in membranes isolated from rat brain was enhanced in a concentration-dependent manner by the GTP analogue guanosine 5'-O-(thio)triphosphate (GTP gamma S). In contrast, neither the labeling of phosphatidylinositol 4-phosphate in the same membranes nor PIP kinase activity in the soluble fraction were stimulated by GTP gamma S. Synthesis of [32P]PIP2 was not stimulated by GTP, GDP, GMP, or ATP; however, the stimulatory effects of GTP gamma S were antagonized by GTP, GDP, and guanosine 5'-O-thiodiphosphate (GDP beta S). The nucleotide-stimulated labeling of PIP2 was not due to protection of [gamma-32P] ATP from hydrolysis, activation of PIP2 hydrolysis by phospholipase C, or inhibition of PIP2 hydrolysis by its phosphomonoesterase. Therefore, phosphatidylinositol 4-phosphate kinase activity in brain membranes may be regulated by a guanine nucleotide regulatory protein. This system may enhance the resynthesis of PIP2 following receptor-mediated activation of phospholipase C.  相似文献   

8.
Stimulation of cultured rabbit aortic vascular smooth muscle cells (VSMC) with serotonin (5HT) induced a rapid generation of inositol phosphates from receptor-mediated hydrolysis of inositol phospholipids. Pretreatment of these cells with 500ng/ml of pertussis toxin for 24h prior to addition of 5HT reduced 5HT-induced formation of inositol phosphates. Phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA) or phorbol-12,13-dibutyrate (PDBu), are known to activate protein kinase C (PKC), but their role on cultured VSMC stimulated by 5HT has not been defined. TPA exhibited a rapid inhibition of 5HT-stimulated phosphoinositide breakdown, although 4 alpha-phorbol-12,13-didecanoate (4 alpha PDD), an inactive phorbol ester, did not inhibit it. These data suggest that a guanine nucleotide inhibitory (Gi) protein couples 5HT receptor to phospholipase C and TPA modulates 5HT-stimulated hydrolysis of inositol phospholipids in cultured VSMC through activation of PKC.  相似文献   

9.
Fluoride and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) both activate the hepatocyte membrane polyphosphoinositide phosphodiesterase (PPI-pde) in a concentration-dependent manner. AlCl3 enhances the fluoride effect, supporting the concept that [A1F4]- is the active species. Analysis of the products of inositol lipid hydrolysis demonstrate that phosphatidylinositol bisphosphate is the major lipid to be hydrolysed. Guanosine 5'-[beta-thio]diphosphate (GDP beta S) is an inhibitor of activation of PPI-pde by both fluoride and GTP gamma S. These observations suggest that the guanine nucleotide regulatory protein (termed Gp) bears a structural resemblance to the well-characterized G-proteins of the adenylate cyclase system and the cyclic GMP phosphodiesterase system in phototransduction.  相似文献   

10.
The effects of guanine nucleotides, thrombin, and platelet cytosol (100,000 X g supernatant) on the hydrolysis of polyphosphoinositides by phospholipase C was examined in isolated platelet membranes labeled with [3H]inositol. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) caused a 2-fold stimulation of polyphosphoinositide hydrolysis, compared to background. GTP gamma S (10 microM) plus thrombin (1 unit/ml) stimulated the release of inositol triphosphate, inositol diphosphate, and inositol phosphate 500, 300, and 250%, respectively, compared to GTP gamma S alone. Cytosol prepared from unlabeled platelets slightly increased the release of inositol phosphates from [3H]inositol-labeled membranes. Addition of cytosol plus GTP gamma S (10 microM), however, resulted in a 300% enhancement of the release of inositol phosphates compared to membranes incubated with thrombin and GTP gamma S. The stimulatory effects of cytosol and GTP gamma S on polyphosphoinositide hydrolysis were also observed when membranes were replaced by sonicated lipid vesicles prepared from a total platelet lipid extract. These data suggest that PIP2 hydrolysis in platelets is catalyzed by a soluble phospholipase C which is regulated by a GTP-binding regulatory protein.  相似文献   

11.
We have assessed the functional interactions of two pure receptor proteins with three different pure guanine nucleotide regulatory proteins in phosphatidylcholine vesicles. The receptor proteins are the guinea pig lung beta-adrenergic receptor (beta AR) and the retinal photon receptor rhodopsin. The guanine nucleotide regulatory proteins were the stimulatory (Ns) and inhibitory (Ni) proteins of the adenylate cyclase system and transducin (T), the regulatory protein from the light-activated cyclic GMP phosphodiesterase system in retinal rod outer segments. The insertion of Ns with beta AR in lipid vesicles increases the extent of binding of [35S] GTP gamma S to Ns and in parallel, the total GTPase activity. However, there is little change in the actual rate of catalytic turnover of GTPase activity (defined as mol of Pi released/min/mol of Ns-guanine nucleotide complexes). Enhancement of this turnover rate requires the beta-agonist isoproterenol and is accounted for by an isoproterenol-promoted increase in the rate and extent of [35S]GTP gamma S binding to Ns. The co-insertion of the beta AR with Ni or transducin results in markedly lower stimulation by isoproterenol of both the GTPase activity and [35S]GTP gamma S binding to these nucleotide regulatory proteins indicating that their preferred order of interaction with beta AR is Ns much greater than Ni greater than T. This contrasts with the preferred order of interaction of these different nucleotide regulatory proteins with light-activated rhodopsin which we find to be T approximately equal to Ni much greater than Ns. Nonetheless the fold stimulation of GTPase activity and [35S]GTP gamma S binding in T, induced by light-activated rhodopsin, is significantly greater than the "fold" stimulation of these activities in Ni. This reflects the greater intrinsic ability of Ni to hydrolyze GTP and bind guanine nucleotides (at 10 mM MgCl2, 100-200 nM GTP or [35S] GTP gamma S) compared to T. The maximum turnover numbers for the rhodopsin-stimulated GTPase in both Ni and T are similar to those obtained for isoproterenol-stimulated activity in Ns. This suggests that the different nucleotide regulatory proteins are capable of a common upper limit of catalytic efficiency which can best be attained when coupled to the appropriate receptor.  相似文献   

12.
The involvement of G regulatory proteins in muscarinic receptor signal transduction was examined in electrically permeabilized rat submandibular acinar cells. The guanine nucleotide analog, GTP gamma S, caused the dose dependent hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to release IP3. This response was insensitive to pertussis toxin treatment and was duplicated by NaF but not by GDP beta S. Enhanced IP3 synthesis was observed with a combination of GTP gamma S and carbachol. Exogenous IP3, as well as carbachol and GTP gamma S, provoked the release of sequestered 45Ca2+ from non-mitochondrial stores. In intact cells, carbachol significantly reduced the level of cyclic AMP induced by the beta-adrenergic agonist, isoproterenol, to 69% of its normal value. Pertussis toxin abolished this inhibitory action of carbachol on cyclic nucleotide levels. These results suggest that muscarinic receptors are coupled to two separate G regulatory proteins in submandibular mucous acini-the pertussis toxin-insensitive Gp of the phosphoinositide transduction pathway associated with elevated cytosolic calcium levels, and the pertussis toxin-sensitive Gi inhibitory protein of the adenylate cyclase complex.  相似文献   

13.
Guanine nucleotides are thought to mediate the interaction of the receptors for calcium-mobilizing hormones and phosphoinositide-specific phospholipase C. In the present study the characteristics of guanine nucleotide-dependent phospholipase C activation were studied in [3H]inositol-labeled permeabilized hepatocytes. The nonhydrolyzable GTP analogs guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and guanyl-5'-yl imidodiphosphate stimulated the production of inositol phosphates by phospholipase C. The effect was concentration-dependent with half-maximal and maximal stimulation occurring with 0.6 and 10 microM GTP gamma S, respectively. The guanine nucleotide-induced stimulation of phosphoinositide breakdown was selective for phosphatidylinositol (4,5)-bisphosphate over phosphatidylinositol (4)-phosphate. The individual inositol phosphates formed after maximal GTP gamma S exposure were analyzed by high-performance liquid chromatography. Inositol 1,4,5-trisphosphate was rapidly produced, followed by the formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate. Ethanol is known to activate hormone-sensitive phospholipase C in intact rat hepatocytes. Ethanol (0.3 M) was ineffective in altering the characteristics of GTP gamma S-stimulated phospholipase C activation, in both digitonin-treated and sonicated hepatocytes. The metabolism of the various inositol phosphate isomers was unaffected by ethanol. The findings demonstrate the potential for the use of permeabilized hepatocytes in the analysis of phospholipase C activation by guanine nucleotides. Ethanol does not activate phospholipase C by altering this process.  相似文献   

14.
Numerous hormones are known to rapidly activate polyphosphoinositide turnover in target cells by promoting phosphodiesteratic cleavage of the phospholipids; however, little is known about the enzymology of receptor-mediated phosphoinositide breakdown. In the present study, thyrotropin-releasing hormone (TRH) stimulation of polyphosphoinositide turnover has been characterized in electrically permeabilized, [3H]myoinositol-labeled GH3 cells. The permeable cells allow the influence of small molecular weight (Mr less than or equal to 1000) cofactors to be determined. We present evidence for the following: 1) TRH stimulates inositol phosphate generation in permeable cells; 2) optimal hormone-stimulated inositol phosphate generation requires Mg2+, ATP, and Ca2+; 3) Mg2+ and ATP requirements reflect polyphosphoinositide kinase reactions; 4) in the absence of MgATP, TRH stimulates the phosphodiesteratic breakdown of pre-existing polyphosphoinositides in a reaction which requires only low Ca2+ (10(-7) M); 5) hormone activation is potentiated in the presence of the stable guanine nucleotide, GTP gamma S; neither TRH-stimulated nor GTP gamma S-potentiated hydrolysis is inhibited by cholera or pertussis toxin treatment. These results demonstrate that hormone-induced phospholipid hydrolysis involves activation of a phosphoinositide phosphodiesterase; activation results in lowering the Ca2+ requirement of the phosphodiesterase such that maximal activity is observed at Ca2+ levels characteristic of a resting cell (10(-7) M). Furthermore, TRH regulation of polyphosphoinositide hydrolysis is modulated by guanine nucleotides; however, nucleotide regulation appears to involve a GTP-binding factor (Np) other than Ns or Ni.  相似文献   

15.
Abstract: To examine the possibility that NaF enhances phosphoinositide-specific phospholipase C (PIC) activity in neural tissues by a mechanism independent of a guanine nucleotide binding protein (Gp), we have evaluated the contribution of Gp activation to NaF-stimulated phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells. Addition of NaF to intact cells resulted in an increase in the release of inositol phosphates (450% of control values; EC50 of ~ 8 mM). Inclusion of U-73122, an aminosteroid inhibitor of guanine nucleotide-regulated PIC activity in these cells, resulted in a dose-dependent inhibition of NaF-stimulated inositol lipid hydrolysis (IC50 of ~ 3.5 μM). When added to digitonin-permeabilized cells, NaF or guanosine-5′-O-thiotriphosphate (GTPγS) resulted in a three- and sevenfold enhancement, respectively, of inositol phosphate release. In the combined presence of optimal concentrations of NaF and GTPγS, inositol phosphate release was less than additive, indicative of a common site of action. Inclusion of 2–5 mM concentrations of guanosine-5′-O-(2-thiodiphosphate) (GDPβS) fully blocked phosphoinositide hydrolysis elicited by GTPγS, whereas that induced by NaF was partially inhibited (65%). However, preincubation of the cells with GDPβS resulted in a greater reduction in the ability of NaF to stimulate inositol phosphate release (87% inhibition). Both GTPγS and NaF-stimulated inositol phosphate release were inhibited by inclusion of 10 μM U-73122 (54–71%). The presence of either NaF or GTPγS also resulted in a marked lowering of the Ca2+ requirement for activation of PIC in permeabilized cells. These results indicate that in SK-N-SH cells, little evidence exists for direct stimulation of PIC by NaF and that the majority of inositol phosphate release that occurs in the presence of NaF can be attributed to activation of Gp.  相似文献   

16.
[3H]Inositol-labelled GH3 rat anterior pituitary tumour cells were permeabilized with digitonin and were incubated at 37 degrees C in the presence of ATP and Mg2+. [3H]Polyphosphoinositide breakdown and [3H]inositol phosphate production were stimulated by hydrolysis-resistant GTP analogues and by Ca2+. Of the nucleotides tested, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) was the most effective stimulus. Activation by GTP gamma S appeared to be mediated by a guanine nucleotide-binding (G) protein as GTP gamma S-stimulated [3H]inositol phosphate production was inhibited by other nucleotides with a potency order of GTP = GDP = guanosine 5'-[beta-thio]diphosphate greater than ITP greater than GMP greater than UTP = CTP = adenosine 5'-[gamma-thio]triphosphate. The stimulatory effects of 10 microM-GTP gamma S on [3H]inositol phosphate levels were reversed by spermine and spermidine with IC50 values of approx. 0.25 and 2 mM respectively. Putrescine was inhibitory only at higher concentrations. Similarly, GTP gamma S-induced decreases in [3H]polyphosphoinositide levels were reversed by 2.5 mM-spermine. The inhibitory effects of spermine were not overcome by supramaximal concentrations of GTP gamma S. In contrast, [3H]inositol phosphate production stimulated by addition of 0.3-0.6 mM-Ca2+ to incubation media was only partially inhibited by spermine (5 mM), and spermine was not inhibitory when added Ca2+ was increased to 1 mM. These data show that polyamines, particularly spermine, inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis with a marked selectivity towards the stimulatory effects of GTP gamma S.  相似文献   

17.
Membranes prepared from [3H]inositol-labeled turkey erythrocytes express a phospholipase C that is markedly stimulated by stable analogs of GTP (Harden, T. K., Stephens, L., Hawkins, P. T., and Downes, C. P. (1987) J. Biol. Chem. 262, 9057-9061). We now report that P2-purinergic receptor-mediated regulation of the enzyme occurs in the membrane preparation. The order of potency of a series of ATP and ADP analogs for stimulation of inositol phosphate formation, i.e. 2-methylthioadenosine 5'-triphosphate (2MeSATP) greater than adenosine 5'-O-(2-thiodiphosphate) greater than adenosine 5'-O-(3-thiotriphosphate) greater than ATP greater than 5'-adenylyl imidodiphosphate approximately ADP greater than alpha, beta-methyleneadenosine 5'-triphosphate greater than beta, gamma-methyleneadenosine 5'-triphosphate, was consistent with that for the P2Y-purinergic receptor subtype. Agonist-stimulated effects were completely dependent on the presence of guanine nucleotide. Activation of phospholipase C by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) occurred with a considerable time lag. The rate of activation followed first order kinetics and was markedly increased by increasing concentrations of a P2Y receptor agonist; in contrast, the rate of activation at a fixed agonist concentration was independent of guanine nucleotide concentration. Addition of guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) prior to addition of agonist and GTP, 5'-guanylyl imidodiphosphate (Gpp(NH)p), or GTP gamma S blocked in a concentration-dependent manner the stimulatory effect of guanine nucleotide. GDP beta S, added subsequent to preactivation of membranes with 2MeSATP and GTP gamma S or Gpp(NH)p had only small inhibitory effects on the rate of inositol phosphate production observed over the subsequent 10 min. In contrast, addition of GDP beta S to GTP-preactivated membranes resulted in a rapid return of enzyme activity to the basal state within 60 s. Taken together, the data are consistent with the idea that P2Y receptor activation increases the rate of exchange of GTP and GTP analogs for GDP on the relevant guanine nucleotide regulatory protein. Once the active enzymic species is formed, hydrolysis of guanine nucleotide reverts the enzyme to the inactive state.  相似文献   

18.
The CD3(T3)/antigen receptor complex appears to function by transducing an antigen signal presented by macrophages into the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. In order to find out how the CD3/antigen receptor complex regulates the hydrolysis of PtdIns(4,5)P2 to diacylglycerol and inositol trisphosphate, we investigated the possible role played by a guanine nucleotide-binding regulatory protein in PtdIns(4,5)P2 hydrolysis in a human T cell leukemia line, JURKAT. JURKAT cells were made permeable to Al3+, F-, GTP, and a nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), by treatment with pseudomonal cytotoxin. In the presence of AlCl3 NaF stimulated the release of inositol phosphates in the cytotoxin-treated JURKAT cells. NaF plus AlCl3 induced increases in inositol tris-, bis-, and mono-phosphates and decreases in PtdIns(4,5)P2, phosphatidylinositol 4-phosphate, and phosphatidylinositol within 5 min after addition to the cytotoxin-treated cells at 37 C. GTP gamma S stimulated, to some extent, polyphosphoinositide hydrolysis in the cytotoxin-treated JURKAT. The cytotoxin-treated JURKAT cells retained the ability to respond to anti-Leu-4 with polyphosphoinositide hydrolysis. It has been shown that Al3+ in the presence of F- modulates the activity of various guanine nucleotide-binding regulatory proteins. Therefore, the results obtained in this study indicate that a guanine nucleotide-binding regulatory protein regulates the polyphosphoinositide breakdown in JURKAT cells by influencing phosphodiesterase activity.  相似文献   

19.
Glutamate uptake into synaptic vesicles is driven by a proton electrochemical gradient generated by a vacuolar H(+)-ATPase and stimulated by physiological concentrations of chloride. This uptake plays an important role in glutamatergic transmission. We show here that vesicular glutamate uptake is selectively inhibited by guanine derivatives, in a time- and concentration-dependent manner. Guanosine, GMP, GDP, guanosine-5'-O-2-thiodiphosphate, GTP, or 5'-guanylylimidodiphosphate (GppNHp) inhibited glutamate uptake in 1.5 and 3 min incubations, however, when incubating for 10 min, only GTP or GppNHp displayed such inhibition. By increasing ATP concentrations, the inhibitory effect of GTP was no longer observed, but GppNHp still inhibited glutamate uptake. In the absence of ATP, vesicular ATPase can hydrolyze GTP in order to drive glutamate uptake. However, 5mM GppNHp inhibited ATP hydrolysis by synaptic vesicle preparations. GTP or GppNHp decreased the proton electrochemical gradient, whereas the other guanine derivatives did not. Glutamate saturation curves were assayed in order to evaluate the specificity of inhibition of the vesicular glutamate carrier by the guanine derivatives. The maximum velocity of the initial rate of glutamate uptake was decreased by all guanine derivatives. These results indicate that, although GppNHp can inhibit ATPase activity, guanine derivatives are more likely to be acting through interaction with vesicular glutamate carrier.  相似文献   

20.
The effect of praziquantel on phosphoinositide turnover was examined in Schistosoma mansoni to determine if this anthelminthic modulates signal transduction pathways in parasites. Adult worms were radiolabeled with [3H]myoinositol for 24 hr and total inositol phosphate levels determined in the presence of praziquantel. Praziquantel inhibited inositol phosphate turnover when activated with NaF plus AlCl3 or with the nonhydrolyzable guanine nucleotide-binding protein analogue GTP gamma S. Furthermore, praziquantel decreased basal turnover of inositol phosphates. Inhibition was seen in both male and female worms as well as in schistosomula. These data indicate that inhibition of phosphoinositide turnover may contribute to the effect of praziquantel on parasite survival within the definitive host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号