首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Intra-islet interactions influence beta-cell function, and disruption of islet architecture results in a reduction in glucose-induced insulin secretion, whereas re-aggregation improves secretory responsiveness. Our studies on MIN6 cells have shown that by configuring beta-cells as three-dimensional islet-like structures there is a marked improvement in glucose-induced insulin secretion compared to that of their monolayer equivalents. In the present study, we have used the mouse glucagon-secreting alphaTC1 cell line to see whether homotypic interactions are important in the regulation of glucagon secretion from alpha-cells. We found no significant difference in the secretory responses of alphaTC1 cells maintained as monolayers or as cell clusters. We also found that different cell adhesion molecules are involved in cell interactions between alpha- and beta-cells; MIN6 cells express ECAD, whereas alphaTC1 cells express NCAM. ECAD is necessary for cell cluster formation by MIN6 cells but not by alphaTC1 cells, whereas NCAM is not needed for the formation of cell clusters in either cell line.  相似文献   

2.
1,5-Anhydroglucitol stimulates insulin release in insulinoma cell lines   总被引:2,自引:0,他引:2  
Concentrations of 1,5-anhydroglucitol (1,5-AG), which is a major circulating polyol, decrease in patients with diabetes mellitus. In both insulinoma-derived RINr and MIN6 cells, 1,5-AG stimulated insulin release within the range of 0.03-0.61 mM in a dose-dependent manner. Insulin release was maximally stimulated by 1,5-AG to levels that reached 25% and 100% greater than that of control (1,5-AG-free group) in RINr and MIN6 cells, respectively. A physiological concentration of 1,5-AG stimulated insulin release after a 5-min incubation and this action was maintained for 60 min. In addition, at approximately 1/200 the concentration of glucose, 1,5-AG had additive action with 20 mM glucose. The action of 1,5-AG on insulin secretion with other types of saccharides and polyol was similarly additive. Mannnoheptulose and diazoxide suppressed the stimulative action of 1,5-AG on insulin release. The secretagogue action of 1,5-AG seemed to be independent on an increase in the intracellular content of cAMP and ATP. These results suggest that 1,5-AG can stimulate insulin secretion through a mechanism that completely differs from that of glucose.  相似文献   

3.

Background

Pancreatic β-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations. The critical plasma glucose concentration has been determined to be ~3 mM, at which time both insulin and GABA are released from pancreatic β-cells. Taurine, a β-sulfonic acid, may be transported into cells to balance osmotic pressure. The taurine transporter (TauT) has been described in pancreatic tissue, but the function of taurine in insulin release has not been established. Uptake of taurine by pancreatic β-cells may alter membrane potential and have an effect on ion currents. If taurine uptake does alter β-cell current, it might have an effect on exocytosis of cytoplasmic vesicle. We wished to test the effect of taurine on regulating release of insulin from the pancreatic β-cell.

Methods

Pancreatic β-cell lines Hit-TI5 (Syrian hamster) and Rin-m (rat insulinoma) were used in these studies. Cells were grown to an 80% confluence on uncoated cover glass in RPMI media containing 10% fetal horse serum. The cells were then adapted to a serum-free, glucose free environment for 24 hours. At that time, the cells were treated with either 1 mM glucose, 1 mM taurine, 1 mM glucose + 1 mM taurine, 3 mM glucose, or 3 mM glucose + 1 mM taurine. The cells were examined by confocal microscopy for cytoplasmic levels of insulin.

Results

In both cell lines, 1 mM glucose had no effect on insulin levels and served as a control. Cells starved of glucose had a significant reduction (p<0.001) in the level of insulin, but this level was significantly higher than all other treatments. As expected, the 3 mM glucose treatment resulted in a statistically lower (p<0.001) insulin level than control cells. Interestingly, 1 mM taurine also resulted in a statistically lower level of insulin (p<0.001) compared to controls when either no glucose or 1 mM glucose was present. Cells treated with 1 mM taurine plus 3 mM glucose showed a level of insulin similar to that of 3 mM glucose alone.

Conclusions

Taurine administration can alter the electrogenic response in β-cell lines, leading to a change in calcium homeostasis and a subsequent decrease in intracellular insulin levels. The consequence of these actions could represent a method of increasing plasma insulin levels leading to a decrease in plasma glucose levels.
  相似文献   

4.
Endocrine pancreatic beta cells require endothelial signals for their differentiation and function. However, the molecular basis for such signals remains unknown. Here, we show that beta cells, in contrast to the exocrine pancreatic cells, do not form a basement membrane. Instead, by using VEGF-A, they attract endothelial cells, which form capillaries with a vascular basement membrane next to the beta cells. We have identified laminins, among other vascular basement membrane proteins, as endothelial signals, which promote insulin gene expression and proliferation in beta cells. We further demonstrate that beta1-integrin is required for the beta cell response to the laminins. The proposed mechanism explains why beta cells must interact with endothelial cells, and it may apply to other cellular processes in which endothelial signals are required.  相似文献   

5.
Beta cell function, peripheral sensitivity to insulin and specific pancreatic autoimmunity were studied in 30 youngsters with cystic fibrosis (CF) accurately selected in order to fulfill the criteria for normal glucose tolerance. With respect to weight-matched controls, patients with CF exhibited a significantly lower glucose tolerance and a globally preserved, although delayed, insulin response to oral glucose tolerance test, while first-phase insulin secretion after i.v. glucose was blunted. Peripheral sensitivity to insulin, assessed in vivo by both the euglycemic clamp technique and the number of insulin receptors, directly measured in circulating monocytes, was superimposable in patients and controls. Serum islet-cell antibodies were not found in any of the patients. In conclusion, disorders of beta cell function may be observed in CF patients even when glucose tolerance is within the normal range. Such abnormalities are not associated with changes in peripheral sensitivity to insulin and do not seem to depend on specific autoimmune events.  相似文献   

6.
Measuring the balance between insulin synthesis and insulin release   总被引:4,自引:0,他引:4  
The absolute rates of hormone synthesis and release were determined in purified pancreatic B cells. Newly synthesized proteins were labeled with L-[3,5-3H]tyrosine or L-[2,5-3H]histidine. When medium glucose was less than or equal to 10 mM, the production of insulin exceeded or equaled its release. Raising the glucose levels above 10 mM did not further increase the rate of insulin synthesis (67 +/- 10 fmol/10(3) cells/2 hour) but elevated that of insulin release up to 3-fold the production rates (181 +/- 10 fmol/10(3) cells/2 hour). In the presence of glucagon or of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate the cells also released 3-fold more hormone that they synthesized; release was however reduced to 25% of the rate of production in the presence of epinephrine. It is concluded that glucose as well as hormonal regulators of islet B cells can influence, bi-directionally, the balance between the rates of insulin synthesis and release.  相似文献   

7.
8.
Apoptosis of beta cells is a feature of both type 1 and type 2 diabetes as well as loss of islets after transplantation. In type 1 diabetes, beta cells are destroyed by immunological mechanisms. In type 2 diabetes abnormal levels of metabolic factors contribute to beta cell failure and subsequent apoptosis. Loss of beta cells after islet transplantation is due to many factors including the stress associated with islet isolation, primary graft non-function and allogeneic graft rejection. Irrespective of the exact mediators, highly conserved intracellular pathways of apoptosis are triggered. This review will outline the molecular mediators of beta cell apoptosis and the intracellular pathways activated.  相似文献   

9.
Dihydrosomatostatin (0.001–1.0 ug/ml) inhibited both insulin and glucagon secretion by monolayer cell cultures of newborn rat pancreas. When cultures were incubated with somatostatin and then rinsed, the effect of somatostatin appeared to last longer on the pancreatic alpha cell than on the beta cell as indicated by a more prolonged inhibition of glucagon secretion than of insulin release. Submaximal inhibition of glucose-stimulated insulin release by somatostatin was partially reversed by increasing the concentration of glucose. We conclude that the effect of somatostatin appears to be mediated directly on the pancreatic endocrine cells.  相似文献   

10.
11.
12.
13.
14.
15.
A model for insulin secretion with a storage and a labile compartment, as well as a provisionary factor, is combined with a signal model in which the signal can be the difference between an excitation and an inhibition, or the difference in concentrations inside and outside some cell components. The model, using a single set of values for the parameters, accounts in a semiquantitative manner for all of the regularly appearing features of the insulin secretion from thein vitro perfused pancreas to a wide range of patterns of glucose and tolbutamide stimulation. Among the features which can be accounted for are: early and late secretion of insulin as a function of glucose in terms of a single parameter; the apparent depletion and recovery during a pulsed pattern of stimulation by tolbutamide; the hypersecretion following a short period of rest during a prolonged stimulation by glucose; the negative spike which occurs when the concentration of glucose, which has been maintained for a period of time, is suddenly reduced to a lower level; and the appropriate responses to slow and fast ramp functions of glucose concentration.  相似文献   

16.
Summary Under normal environmental conditions, L-glutamine is well oxidized but fails to stimulate insulin release in rat pancreatic islets. However, a marked stimulation of insulin release by L-glutamine, without alteration in its oxidation rate, occurs when the intracellular pH of the islet cells is decreased and/or when theophylline is added to the incubation medium.  相似文献   

17.
Mechanisms of inhibition of insulin release   总被引:6,自引:0,他引:6  
  相似文献   

18.
Plasma insulin levels are determined mainly by the rate of exocytosis of the insulin-containing large dense core vesicles (LDCVs) of pancreatic islet beta-cells. This process involves the recruitment of LDCVs to the plasma membrane, where they are docked by the assembly of multiprotein SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. However, fusion of the two membranes will proceed only in the presence of Ca(2+) ions, implicating a Ca(2+) sensor protein. The synaptotagmin gene family, comprising 15 members, was proposed to act as such Ca(2+) sensor in regulated exocytosis in neurons and neuroendocrine and endocrine cells. Herein, we review the physiological function of the various synaptotagmins with reference to their impact on insulin exocytosis. Cumulating evidence emphasizes the crucial role of synaptotagmin VII and IX as mediators of glucose-induced insulin secretion.  相似文献   

19.
In the absence of secretagogue, Ca2+ (2 to 10 mM) provokes a short-lived release of insulin in the perfused rat pancreas first exposed to EGTA. The secretory response is abolished by verapamil and enhanced by theophylline. These findings afford the first demonstration that Ca2+ itself can trigger insulin release.  相似文献   

20.
Recent in vivo and in vitro experiments suggested that the smooth muscle relaxation mediated by diverse pharmacologic agents resulted from K+ channel opening. Pinacidil, cromakalim, nicorandil, RP 49356, minoxidil sulfate and diazoxide belong to this new group of smooth muscle relaxants: the "K+ channel openers". Because modifications in the K+ permeability are known to represent a critical event in the insulin-releasing process, numerous studies have been performed in order to examine the putative effects of K+ channel openers on B-cell function. The aim of the present review is to summarize these experimental data which are sometimes divergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号