首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hypoxia at birth is a major source of brain damage and it is associated with serious neurological sequelae in survivors. Alterations in the extracellular turnover of glutamate (Glu) and acetylcholine (ACh), two neurotransmitters that are essential for normal hippocampal function and learning and memory processes, may contribute to some of the neurological effects of perinatal hypoxia. We set out to determine the immediate and long-lasting effects of hypoxia on the turnover of these neurotransmitters by using microdialysis to measure the extracellular concentration of Glu and ACh in hippocampus, when hypoxia was induced in rats at postnatal day (PD) 7, and again at PD30. In PD7 rats, hypoxia induced an increase in extracellular Glu concentrations that lasted for up to 2.5 h and a decrease in extracellular ACh concentrations over this period. By contrast, perinatal hypoxia attenuated Glu release in asphyxiated rats, inducing a decrease in basal Glu levels when these animals reached PD30. Unlike Glu, the basal ACh levels in these animals were greater than in controls at PD30, although ACh release was stimulated less strongly than in control animals. These results provide the first evidence of the initial and long term consequences of the hypoxia on Glu and ACh turnover in the brain, demonstrating that hypoxia produces significant alterations in hippocampal neurochemistry and physiology.  相似文献   

4.
The neuropathological and immune changes induced in the brain by 'binge drinking' have been investigated in a rat model. Evidence of neuro-inflammation was identified in the 'binge drinking' rat model of alcohol abuse after 3 weeks of administration of 2 or 3 g/kg ethanol (EtOH), three times per day for two consecutive days, followed by 5 days of abstinence: Firstly, alveolar macrophages, isolated from these animals, showed significant increases in inducible nitric oxide synthase, as assayed by nitrite release, both before and after lipopolysaccaharide stimulation. Secondly, significant numbers of activated microglia were present in the dentate gyrus region of the hippocampus of the 'binge drinking' model, after major histocompatibility complex class II staining, by comparison with the control. Microdialysis studies in the ventral hippocampus identified a significant increase in the basal extracellular concentration of glutamate, in both the 2 and 3 g/kg administered 'binge drinking' rats. In contrast, no changes in the hippocampal extracellular concentrations, of GABA and taurine, or the dopamine and serotonin metabolites were observed under basal conditions. A further dose of EtOH induced a significant decrease in the concentrations of both 3,4-dihydroxyphenylacetic acid and 5-hydroxyindoleacetic acid, whereas glutamate, taurine and GABA levels were unaffected. There was no evidence that EtOH preference was initiated by the 'binge drinking' regimen. Our results suggest that the possible toxicity associated with 'binge drinking' maybe directed by the elevated glutamate levels, which in turn, activate phagocytic cells to release their inflammatory cytokines and chemokines, ultimately leading to neuro-inflammation.  相似文献   

5.
L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain. Here, we show that decreasing glutamate buffering capacity is neurotoxic in Drosophila. We found that the only Drosophila high-affinity glutamate transporter, dEAAT1, is selectively addressed to glial extensions that project ubiquitously through the neuropil close to synaptic areas. Inactivation of dEAAT1 by RNA interference led to characteristic behavior deficits that were significantly rescued by expression of the human glutamate transporter hEAAT2 or the administration in food of riluzole, an anti-excitotoxic agent used in the clinic for human ALS patients. Signs of oxidative stress included hypersensitivity to the free radical generator paraquat and rescue by the antioxidant melatonin. Inactivation of dEAAT1 also resulted in shortened lifespan and marked brain neuropil degeneration characterized by widespread microvacuolization and swollen mitochondria. This suggests that the dEAAT1-deficient fly provides a powerful genetic model system for molecular analysis of glutamate-mediated neurodegeneration.  相似文献   

6.
Following exocytosis at excitatory synapses in the brain, glutamate binds to several subtypes of postsynaptic receptors. The degree of occupancy of AMPA and NMDA receptors at hippocampal synapses is, however, not known. One approach to estimate receptor occupancy is to examine quantal amplitude fluctuations of postsynaptic signals in hippocampal neurons studied in vitro. The results of such experiments suggest that NMDA receptors at CA1 synapses are activated not only by glutamate released from the immediately apposed presynaptic terminals, but also by glutamate spillover from neighbouring terminals. Numerical simulations point to the extracellular diffusion coefficient as a critical parameter that determines the extent of activation of receptors positioned at different distances from the release site. We have shown that raising the viscosity of the extracellular medium can modulate the diffusion coefficient, providing an experimental tool to investigate the role of diffusion in activation of synaptic and extrasynaptic receptors. Whether intersynaptic cross-talk mediated by NMDA receptors occurs in vivo remains to be determined. The theoretical and experimental approaches described here also promise to shed light on the roles of metabotropic and kainate receptors, which often occur in an extrasynaptic distribution, and are therefore positioned to sense glutamate escaping from the synaptic cleft.  相似文献   

7.
Distribution of immunoreactive cholecystokinin in the human hippocampus   总被引:1,自引:0,他引:1  
The distribution of cholecystokinin immunoreactive (CCK-IR) nerve cell bodies and processes is reported in the human hippocampus by using the peroxidase-antiperoxidase technique of Sternberger. The CCK-immunoreactivity occurs in three major classes of interneurons: small (10-20 microns) horizontal multipolar neurons of the alveus and stratum oriens; small vertically oriented bipolar or multi-polar neurons in the stratum oriens and stratum pyramidale of Ammon's horn, layers II and III of the subicular system and the entorhinal area; large (20-35 microns) bipolar neurons in the hilus. Each region of the hippocampus is distinct in its CCK-IR nerve fibers content. Those fibers are particularly abundant around pyramidal cells of the CA2 and CA3 subfields of the Ammon's horn and around granular cells suggesting synaptic interaction between the CCK nerve terminals and glutamate neurons of these two regions. No CCK-IR fiber is detected in the fimbria and only a few number of CCK-IR beaded fibers are seen in the angular bundle. These anatomical data suggest that CCK interacts in the functional circuitry of the human hippocampus.  相似文献   

8.
Glutamate transporters (GluTs) are the primary regulators of extracellular concentration of the neurotransmitter glutamate in the central nervous system. In this study, we have investigated the dynamics and coupling of the substrate and Na+ binding sites, and the mechanism of cotransport of Na+ ions, using molecular dynamics simulations of a membrane-embedded model of GluT in its apo (empty form) and various Na+- and/or substrate-bound states. The results shed light on the mechanism of the extracellular gate and on the sequence of binding of the substrate and Na+ ions to GluT during the transport cycle. The results suggest that the helical hairpin HP2 plays the key role of the extracellular gate for the substrate binding site, and that the opening and closure of the gate is controlled by substrate binding. GluT adopts an open conformation in the absence of the substrate exposing the binding sites of the substrate and Na+ ions to the extracellular solution. Based on the calculated trajectories, we propose that Na1 is the first element to bind GluT, as it is found to be important for the completion of the substrate binding site. The subsequent binding of the substrate, in turn, is shown to result in an almost complete closure of the extracellular gate and the formation of the Na2 binding site. Finally, binding of Na2 locks the extracellular gate and completes the formation of the occluded state of GluT.  相似文献   

9.
An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.  相似文献   

10.
谷氨酸对原代培养海马神经元的兴奋特性   总被引:2,自引:0,他引:2  
目的:探索谷氨酸对培养大鼠海马神经元的兴奋特性.方法:分离及培养1日龄SD大鼠海马神经元,第9~15 d用膜片钳检测不同浓度谷氨酸对神经元兴奋特性,包括细胞膜电位、去极化/动作电位的影响.结果:谷氨酸降低海马神经元静息膜电位,诱发去极化/动作电位,高浓度谷氨酸处理组神经元的静息膜电位比低浓度组降低显著;100μmol/L谷氨酸长时间处理组的神经细胞膜电位显著低于短时间处理组.结论:谷氨酸对海马神经元兴奋性有浓度和时间依赖性.  相似文献   

11.
Metabotropic L-glutamate receptors are involved in various forms of synaptic plasticity in the hippocampus. The use of a new antagonist (LY341495) that blocks all known metabotropic L-glutamate receptors in the brain, together with subtype-selective antagonists, has identified multiple roles both for cloned and novel metabotropic L-glutamate receptors in hippocampal long-term potentiation and long-term depression.  相似文献   

12.
Heynen AJ  Quinlan EM  Bae DC  Bear MF 《Neuron》2000,28(2):527-536
Experience-dependent regulation of synaptic strength has been suggested as a physiological mechanism by which memory storage occurs in the brain. Although modifications in postsynaptic glutamate receptor levels have long been hypothesized to be a molecular basis for long-lasting regulation of synaptic strength, direct evidence obtained in the intact brain has been lacking. Here we show that in the adult brain in vivo, synaptic glutamate receptor trafficking is bidirectionally, and reversibly, modified by NMDA receptor-dependent synaptic plasticity and that changes in glutamate receptor protein levels accurately predict changes in synaptic strength. These findings support the idea that memories can be encoded by the precise experience-dependent assignment of glutamate receptors to synapses in the brain.  相似文献   

13.
14.
We simulated the diffusion of glutamate, following the release of a single vesicle from a pre-synaptic terminal, in the synaptic cleft by using a Brownian diffusion model based on Langevin equations. The synaptic concentration time course and the time course of quantal excitatory post-synaptic current have been analyzed. The results showed that they depend on the number of receptors located at post-synaptic membrane. Their time course are dependent both on the total number of the post-synaptic receptors and on the eccentricity of the pre-synaptic glutamate vesicle.  相似文献   

15.
The effects of DL-homocysteine, and DL-homocysteate, on extracellular levels of amino acids in the rat hippocampus have been studied using brain microdialysis. Hippocampal electroencephalogram activity was monitored simultaneously using an electrode attached to the dialysis probe. DL-Homocysteine (1200 mg/kg; i.p. injection) produced epileptic activity in hippocampus in an inconsistent manner. Alterations in electroencephalogram activity were not observed in urethane anaesthetized animals, whereas 50% of Hypnorm anaesthetized animals exhibited epileptic activity. DL-Homocysteate (2 mu mol; i.c.v.) induced epileptic activity in a majority of animals anaesthetized using urethane. Dialysate levels of aspartate were significantly elevated by homocysteine in both groups of animals. Conversely, dialysis levels of GABA were reduced. Dialysate levels of other amino acids measured (glutamate, glutamine, taurine, alanine and valine) were not affected significantly. Dialysate levels of taurine were increased significantly in animals injected with homocysteate. These data suggest that the imbalance in excitatory:inhibitory neurotransmission in the hippocampus caused by these alterations in extracellular levels of neuroexcitatory (i.e. aspartate) and neuroinhibitory (i.e. GABA) transmitters could underly the epileptic effect of homocysteine.  相似文献   

16.
Clearance of synaptic glutamate by glial cells is required for the normal function of excitatory synapses and for prevention of neurotoxicity. Although the regulatory role of glial glutamate transporters in glutamate clearance is well established, little is known about the influence of glial glutamate metabolism on this process. This study examines whether glutamine synthetase (GS), a glial-specific enzyme that amidates glutamate to glutamine, affects the uptake of glutamate. Retinal explants were incubated in the presence of [(14)C]glutamate and glutamate uptake was assessed by measurement of the amount of radioactively labeled molecules within the cells and the amount of [(14)C]glutamine released to the medium. An increase in GS expression in Müller glial cells, caused by induction of the endogenous gene, did not affect the amount of glutamate accumulated within the cells, but led to a dramatic increase in the amount of glutamine released. This increase, which was directly correlated with the level of GS expression, was dependent on the presence of external sodium ions, and could be completely abolished by methionine sulfoximine, a specific inhibitor of GS activity. Our results demonstrate that GS activity significantly influences the uptake of glutamate by the neural retina and suggest that this enzyme may represent an important target for neuroprotective strategies.  相似文献   

17.
The ontogeny of the L-glutamate (GLU) and gamma-aminobutyric acid (GABA) neuronal systems in the guinea pig hippocampus was investigated with respect to tissue amino acid content, and spontaneous and K(+)-stimulated release of GLU and GABA. Transverse hippocampal slices were prepared from the guinea pig fetus at day 45 (brain growth spurt), 55 and 63 of gestation (term, about 68 days), from the 5-days-old neonate, and from the young adult. GLU and GABA release was determined as efflux from hippocampal slices into Krebs'-bicarbonate medium using a dynamic, submerged, superfusion apparatus. Hippocampal GLU content decreased during development, whereas GABA content was constant for all the ages investigated. The magnitude of spontaneous GLU efflux decreased during development; there was no measurable spontaneous GABA efflux. The K+ concentration-GLU efflux response curve was bell-shaped for the fetus at the three selected gestational ages, and was curvilinear for the neonate and adult. The apparent EC75 of K(+)-stimulated GLU efflux was higher for the neonate and adult compared with the fetus. In contrast, the K+ concentration-GABA efflux response curve was curvilinear, and the apparent EC75 of K+ was similar for all the ages investigated. K(+)-stimulated efflux of GLU and GABA was Ca++ dependent, but this was not the case for spontaneous GLU efflux. These data indicate that, in the guinea pig hippocampus, the GLU neuronal system is developing throughout gestation, whereas the GABA neuronal system appears to mature before the brain growth spurt.  相似文献   

18.
There is extensive experimental evidence indicating a crucial role for glutamate in epileptogenesis and epileptic activity. The glial glutamate transporters GLT1 and GLAST are proposed to account for the majority of extracellular glutamate re-uptake. In the present study, polyclonal antibodies specific to GLT1 and GLAST were generated and characterized, revealing distribution patterns for the two transporters confirming those previously reported. In situ hybridization and immunoblotting were then used to compare levels of these two transporters in the parietal cortex and hippocampus of unstimulated and stimulated EL mice with DDY control mice. Additionally, HPLC determined tissue glutamate concentrations in the same regions of these animals. These experiments revealed reductions in GLT1 mRNA and protein in the parietal cortex of unstimulated and stimulated EL mice compared with DDY controls, accompanied by an increase in tissue glutamate concentration in the stimulated EL mice group. GLT1 mRNA was also reduced in the CA3 hippocampal subfield of both unstimulated and stimulated EL mice. GLAST protein was reduced in the hippocampus of the stimulated EL mice group, while no changes in GLAST mRNA or protein were detected in the parietal cortex of EL mice when compared with DDY controls. The glial glutamate transporter down-regulation reported here may play a role in seizure initiation, spread and maintenance in the EL mouse.  相似文献   

19.
Tost H  Meyer-Lindenberg A 《Neuron》2011,70(2):171-172
Depression is a common and debilitating psychiatric syndrome with a complex risk architecture marked by interacting genetic and environmental factors. In this issue of Neuron, the study by Kohli et?al. (2011) reports a novel genome-wide supported risk variant for depression that affects hippocampal gene expression, anatomy, and biochemistry.  相似文献   

20.
The effect of lesions induced by bilateral intracerebroventricular (i.c.v.) injection of quinolinate (250 nmol of QUIN/ventricle), a selective N-methyl-D-aspartate (NMDA) receptor agonist, on [3H]glutamate ([3H]Glu) binding to the main types of both ionotropic and metabotropic glutamate receptors (iGluR and mGluR) was investigated in synaptic membrane preparations from the hippocampi of 50-day-old rats. The membranes from QUIN injured brains revealed significantly lowered binding in iGluR (by 31%) as well as in mGluR (by 22%) as compared to the controls. Using selected glutamate receptor agonists as displacers of [3H]Glu binding we found that both the NMDA-subtype of iGluR and group I of mGluR are involved in this decrease of binding. Suppression of nitric oxide (NO) production by N(G)-nitro-L-arginine (50 nmol of NARG/ventricle) or the increase of NO generation by 3-morpholinylsydnoneimine (5 nmol of SIN-1/ventricle) failed to alter [3H]Glu or [3H]CPP (3-((D)-2-carboxypiperazin-4-yl)-[1,2-(3)H]-propyl-1-phosphonic acid; NMDA-antagonist) binding declines caused by QUIN-lesions. Thus, our findings indicate that both the NMDA-subtype of iGluR and group I of mGluR are susceptible to the QUIN-induced neurodegeneration in the rat hippocampus. However, the inhibition of NO synthesis did not reveal any protective action in the QUIN-evoked, NMDA-receptor mediated decrease of [3H]Glu binding. Therefore, the additional mechanisms of QUIN action, different from direct NMDA receptor activation/NO production (e.g. lipid peroxidation induced by QUIN-Fe-complexes) cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号