首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The increasing incidence of small renal tumors in an aging population with comorbidities has stimulated the development of minimally invasive treatments. This study aimed to assess the efficacy and demonstrate feasibility of multimodality imaging of intratumoral administration of holmium-166 microspheres (166HoAcAcMS). This new technique locally ablates renal tumors through high-energy beta particles, while the gamma rays allow for nuclear imaging and the paramagnetism of holmium allows for MRI.

Methods

166HoAcAcMS were administered intratumorally in orthotopic renal tumors (Balb/C mice). Post administration CT, SPECT and MRI was performed. At several time points (2 h, 1, 2, 3, 7 and 14 days) after MS administration, tumors were measured and histologically analyzed. Holmium accumulation in organs was measured using inductively coupled plasma mass spectrometry.

Results

166HoAcAcMS were successfully administered to tumor bearing mice. A striking near-complete tumor-control was observed in 166HoAcAcMS treated mice (0.10±0.01 cm3 vs. 4.15±0.3 cm3 for control tumors). Focal necrosis and inflammation was present from 24 h following treatment. Renal parenchyma outside the radiated region showed no histological alterations. Post administration CT, MRI and SPECT imaging revealed clear deposits of 166HoAcAcMS in the kidney.

Conclusions

Intratumorally administered 166HoAcAcMS has great potential as a new local treatment of renal tumors for surgically unfit patients. In addition to strong cancer control, it provides powerful multimodality imaging opportunities.  相似文献   

2.

Background

Radiotracer imaging of the presynaptic nigrostriatal dopaminergic system is used to assess disease progression in Parkinson''s disease (PD) and may provide a useful adjunct to clinical assessment during therapeutic trials of potential neuroprotective agents. Several clinical trials comparing dopamine agonists to L-DOPA or early vs. late L-DOPA have revealed differences between clinical assessment and imaging of the presynaptic dopaminergic system, hence questioning the comparability of these measures as neuroprotection outcome variables. Thus, results of these studies may have been affected by factors other than the primary biological process investigated.

Methodology/Principal Findings

We tested the possibility that L-DOPA might interfere with DAT binding. Post-mortem DAT binding was conducted in normal and MPTP-treated macaque monkeys that were administered L-DOPA, acutely or chronically. In parallel, DAT SPECT was conducted in MPTP-treated animals that were administered chronic L-DOPA. [99mTc]TRODAT-1 SPECT binding was similarly reduced in all MPTP monkeys regardless of L-DOPA treatment. L-DOPA had no significant effect on post-mortem DAT binding either in saline or in MPTP-lesioned animals.

Conclusions/Significance

These data indicate that L-DOPA does not induce modifications of DAT expression detectable by SPECT of by DAT binding autoradiography, suggesting that differences between clinical assessment and radiotracer imaging in clinical trials may not be specifically related to L-DOPA treatment.  相似文献   

3.

Background

Polymer gel dosimetry has been used extensively in radiation therapy for its capability in depicting a three dimensional view of absorbed dose distribution. However, more studies are required to find less toxic and more efficient polymers for application in radiotherapy dosimetry.

Aim

The purpose of this work was to evaluate the N-isopropyl acrylamide (NIPAM) gel dosimetric characteristics and optimize the protocol for X-ray computed tomography (CT) imaging of gel dosimeters for radiation therapy application.

Material and methods

A polymer gel dosimeter based on NIPAM monomer was prepared and irradiated with 60Co photons. The CT number changes following irradiation were extracted from CT images obtained with different sets of imaging parameters.

Results

The results showed the dose sensitivity of ΔNCT (H) = 0.282 ± 0.018 (H Gy−1) for NIPAM gel dosimeter. The optimized set of imaging exposure parameters was 120 kVp and 200 mA with the 10 mm slice thickness. Results of the depth dose measurement with gel dosimeter showed a great discrepancy with the actual depth dose data.

Conclusion

According to the current study, NIPAM-based gel dosimetry with X-ray CT imaging needs more technical development and formulation refinement to be used for radiation therapy application.  相似文献   

4.

Background

Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the color-coupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99.

Principal Findings

Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and green CBG99 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved when cells were either injected subcutaneously or directly into the prostate.

Significance

We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays, our study demonstrated enhanced sensitivity combined with spatially separate BL spectral emissions using a suitable spectral unmixing algorithm. This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future for more accurate quantitative gene expression studies in vivo by simultaneously monitoring two events in real time.  相似文献   

5.
BackgroundTo improve therapy outcome of Yttrium-90 selective internal radiation therapy (90Y SIRT), patient-specific post-therapeutic dosimetry is required. For this purpose, various dosimetric approaches based on different available imaging data have been reported. The aim of this work was to compare post-therapeutic 3D absorbed dose images using Technetium-99m (99mTc) MAA SPECT/CT, Yttrium-90 (90Y) bremsstrahlung (BRS) SPECT/CT, and 90Y PET/CT.MethodsTen SIRTs of nine patients with unresectable hepatocellular carcinoma (HCC) were investigated. The 99mTc SPECT/CT data, obtained from 99mTc-MAA-based treatment simulation prior to 90Y SIRT, were scaled with the administered 90Y therapy activity. 3D absorbed dose images were generated by dose kernel convolution with scaled 99mTc/90Y SPECT/CT, 90Y BRS SPECT/CT, and 90Y PET/CT data of each patient. Absorbed dose estimates in tumor and healthy liver tissue obtained using the two SPECT/CT methods were compared against 90Y PET/CT.ResultsThe percentage deviation of tumor absorbed dose estimates from 90Y PET/CT values was on average −2 ± 18% for scaled 99mTc/90Y SPECT/CT, whereas estimates from 90Y BRS SPECT/CT differed on average by −50 ± 13%. For healthy liver absorbed dose estimates, all three imaging methods revealed comparable values.ConclusionThe quantification capabilities of the imaging data influence 90Y SIRT tumor dosimetry, while healthy liver absorbed dose values were comparable for all investigated imaging data. When no 90Y PET/CT image data are available, the proposed scaled 99mTc/90Y SPECT/CT dosimetry method was found to be more appropriate for HCC tumor dosimetry than 90Y BRS SPECT/CT based dosimetry.  相似文献   

6.

Aim

In this study, the dosimetric properties of the electronic portal imaging device were examined and the quality assurance testing of Volumetric Modulated Arc Therapy was performed.

Background

RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during gantry rotation.

Materials and methods

A Varian RapidArc machine equipped with 120 multileaf collimator and amorphous silicon detector was used for the study. The characteristics that are variable in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multileaf collimator position at different gantry angles and during gantry rotation was examined using the picket fence test. The control of the dose rate and gantry speed was verified using a test field irradiating seven strips of the same dose with different dose rate and gantry speeds. The control over leaf speed during arc was verified by irradiating four strips of different leaf speeds with the same dose in each strip. To verify the results, the RapidArc test procedure was compared with the X-Omat film and verified for a period of 6 weeks using EPID.

Results

The effect of gantry rotation on leaf accuracy was minimal. The dose in segments showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for leaf speed control over different gantry speeds.

Conclusion

The results provided a precise control of gantry speed, dose rate and leaf speeds during RapidArc delivery and were consistent over 6 weeks.  相似文献   

7.

Background

The aim of the modern radiotherapy is to get a homogenous dose distribution in PTV, which is obtained by using for example physical or dynamic wedges. The using of a physical wedge has provided such isodose distributions but their use resulted in detrimental dosimetric consequences, for example beam hardening effects and practical consequences of filter handling or possible misalignment. Linear accelerators are now equipped with collimator jaws systems and controlled by modern computers and it is possible to generate wedge shaped isodose distributions dynamically. Because of a more comfortable use of a dynamic wedge, there are alternatives to the standard physical wedge. During the treatment, different segments of the treatment field can be exposed to the primary beam at different intervals of time. This process of shrinking the field while modulating the collimator jaw velocity and dose rate creates the desired wedge-shaped isodose gradient across the treatment field. Dynamic wedges can replace physical wedges but they need more precise dosimetry and quality control procedures.

Aim

The aim of this study was to perform a multienergetic verification of dynamic wedge angles using the multichannel detector PTW LA48 linear array.

Material and methods

The measurements of angle value of dynamic wedges were performed for Clinac 2300 C/D accelerators (Varian). The accelerator was equipped with the EDW option for 6 MV and 15 MV photon beams. In this case, 7 wedge angle values were used: 10°, 15°, 20°, 25°, 30°, 45° and 60°. The dynamic wedges are realized by continuous movement of one collimator jaw. The field size is gradually reduced until the collimator is almost completely closed or the field increases, while the beam is on. The measurements were divided in two steps: in the first step, the dynamic wedges were verified with the recommended values and in the second step there the planned and measured angles of dynamic wedges were compared. Measurements were made by means of LA48 linear array of ionization chambers (PTW). The results of the measurements were compared with the reference profile produced by the treatment planning system ECLIPSE 8.5 (Varian).

Results

The results showed differences between measured and calculated angle of dynamic wedges. The differences were observed for both energies in the case of a small angle value. For energies 6 MV and 15 MV, almost all percentage difference between the measured and calculated profile was lower than 5%. The biggest difference was observed in the first step of measurements when the angle of Dynamic Wedge was verified. The comparison between the planned and measured angle value of Dynamic Wedge showed the difference between 0.1% and 4.5%.The difference for 6 MV for the angle value of 10° in orientation IN was 1.1% and for energy 15 MV in the same case the difference was 3.8%. Thinner wedges exhibit less difference.

Conclusion

It is necessary to provide comprehensive quality control procedure for enhanced dynamic wedges. Verification measurements should be an obligatory procedure in the recommendation for the testing of medical accelerators. These results are the preliminary results to provide measurements in other Polish Cancer Centres.  相似文献   

8.

Purpose

99mTc-3PRGD2, a promising tracer targeting integrin receptor, may serve as a novel tumor-specific agent for single photon emission computed tomography (SPECT). A multi-center study was prospectively designed to evaluate the diagnostic accuracy of 99mTc-3PRGD2 imaging for bone metastasis in patients with lung cancer in comparison with the conventional 99mTc-MDP bone scan.

Methods

The patients underwent whole-body scan and chest tomography successively at both 1 h and 4 h after intravenous injection of 11.1 MBq/Kg 99mTc-3PRGD2. 99mTc-MDP whole-body bone scan was routinely performed within 1 week for comparison. Three experienced nuclear medicine physicians blindly read the 99mTc-3PRGD2 and 99mTc-MDP images. The final diagnosis was established based on the comprehensive assessment of all available data.

Results

A total of 44 patients (29 male, 59±10 years old) with suspected lung cancer were recruited from 4 centers. Eighty-nine bone lesions in 18 patients were diagnosed as metastases and 23 bone lesions in 9 patients were benign. In a lesion-based analysis, 99mTc-3PRGD2 imaging demonstrated a sensitivity, specificity, and accuracy of 92.1%, 91.3%, and 92.0%, respectively. The corresponding diagnostic values for 99mTc-MDP bone scan were 87.6%, 60.9%, and 82.1%, respectively in the same patients. 99mTc-MDP bone scan had better contrast in most lesions, whereas the 99mTc-3PRGD2 imaging seemed to be more effective to exclude pseudo-positive lesions and detect bone metastases without osteogenesis.

Conclusion

99mTc-3PRGD2 is a novel tumor-specific agent based on SPECT technology with a promising value in diagnosis of bone metastasis in patients with lung cancer.

Trial Registration

ClinicalTrials.gov NCT01737112  相似文献   

9.

Background

Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI.

Methodology/Principal Findings

By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as β+ and β can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), Na18F, Na131I, 90YCl3 and a 90Y labeled peptide that specifically target tumors.

Conclusions/Significance

These studies demonstrate generalizability of radioactive OI technique. It provides a new molecular imaging strategy and will likely have significant impact on both small animal and clinical imaging.  相似文献   

10.

Aim

The aim of the study was to verify the dose distribution optimisation method in pulsed brachytherapy.

Background

The pulsed-dose rate brachytherapy is a very important method of breast tumour treatment using a standard brachytheraphy equipment. The appropriate dose distribution round an implant is an important issue in treatment planning. Advanced computer systems of treatment planning are equipped with algorithms optimising dose distribution.

Materials and methods

The wax-paraffin phantom was constructed and seven applicators were placed within it. Two treatment plans (non-optimised, optimised) were prepared. The reference points were located at a distance of 5 mm from the applicators’ axis. Thermoluminescent detectors were placed in the phantom at suitable 35 chosen reference points.

Results

The dosimetry verification was carried out in 35 reference points for the plans before and after optimisation. Percentage difference for the plan without optimisation ranged from −8.5% to 1.4% and after optimisation from −8.3% to 0.01%. In 16 reference points, the calculated percentage difference was negative (from −8.5% to 1.3% for the plan without optimisation and from −8.3% to 0.8% for the optimised plan). In the remaining 19 points percentage difference was from 9.1% to 1.4% for the plan without optimisation and from 7.5% to 0.01% for the optimised plan.No statistically significant differences were found between calculated doses and doses measured at reference points in both dose distribution non-optimised treatment plans and optimised treatment plans.

Conclusions

No statistically significant differences were found in dose values at reference points between doses calculated by the treatment planning system and those measured by TLDs. This proves the consistency between the measurements and the calculations.  相似文献   

11.

Purpose

The purpose of this study was to evaluate the accuracy of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) perfusion MR imaging for distinguishing tumor recurrence from post-treatment effect as alternatives to dynamic-susceptibility contrast-enhanced (DSC) perfusion MR imaging when the DSC image is uninterpretable.

Materials and Methods

This retrospective study was approved by our institutional review board. Seventy one post-treatment glioblastoma patients who showed enlarged contrast-enhancing lesions on follow-up MR images after concurrent chemoradiotherapy and uninterpretable DSC images for corresponding enhancing lesions, underwent additional DWI and DCE MR imaging. The primary outcome was the frequency of interpretable DWI and DCE MR cases in these 71 patients. The secondary outcome was the area under the receiver operating characteristic curve (AUC) of DWI and DCE imaging parameters for distinguishing tumor recurrence from post-treatment effect in selected patients with interpretable DWI and DCE images. The imaging parameters were quantified as 10% cumulative histogram cutoff of apparent diffusion coefficient (ADC10) and 90% cumulative histogram cutoff of initial area under the time signal intensity curve (IAUC90). The AUCs were cross-validated by using leave-one-out method.

Results

Of the 71 patients, the uninterpretable DSC images were associated with treatment-related hemorrhage within the corresponding enhancing lesions (n = 54, 76.1%) and a near skull base location (n = 17, 23.9%). The frequencies of interpretable DWI and DCE image were 51 (71.8%) and 59 (83.1%) of the 71 cases with uninterpretable DSC images, respectively. Of the 45 selected patients with interpretable DWI and DCE images, the combination of DWI with DCE imaging showed a superior diagnostic performance than DWI or DCE imaging alone for differentiating tumor recurrence from post-treatment effect (cross-validated AUC: 0.78 versus 0.55 and 0.73 for reader 1; cross-validated AUC: 0.78 versus 0.53 and 0.75 for reader 2, respectively). Cross-validated accuracy of the single and combined imaging parameters also showed the highest for the combination of DWI with DCE MR imaging (72.9% for reader 1; 72.5% for reader 2) and the lowest for DWI alone (54.0% for reader 1; 56.4% for reader 2). Inter-reader agreement for DCE imaging was higher than that for DWI (intraclass correlation coefficient: 0.95 versus 0.87).

Conclusion

DCE MR imaging could be a superior and more reproducible imaging biomarker than DWI for differentiating tumor recurrence from post-treatment effect in patients with post-treatment glioblastoma when DSC MR images are not interpretable.  相似文献   

12.

Background

Psychotherapy has demonstrated comparable efficacy to antidepressant medication in the treatment of major depressive disorder. Metabolic alterations in the MDD state and in response to treatment have been detected by functional imaging methods, but the underlying white matter microstructural changes remain unknown. The goal of this study is to apply diffusion tensor imaging techniques to investigate psychotherapy-specific responses in the white matter.

Methods

Twenty-one of forty-five outpatients diagnosed with major depression underwent diffusion tensor imaging before and after a four-week course of guided imagery psychotherapy. We compared fractional anisotropy in depressed patients (n = 21) with healthy controls (n = 22), and before-after treatment, using whole brain voxel-wise analysis.

Results

Post-treatment, depressed subjects showed a significant reduction in the 17-item Hamilton Depression Rating Scale. As compared to healthy controls, depressed subjects demonstrated significantly increased fractional anisotropy in the right thalamus. Psychopathological changes did not recover post-treatment, but a novel region of increased fractional anisotropy was discovered in the frontal lobe.

Conclusions

At an early stage of psychotherapy, higher fractional anisotropy was detected in the frontal emotional regulation-associated region. This finding reveals that psychotherapy may induce white matter changes in the frontal lobe. This remodeling of frontal connections within mood regulation networks positively contributes to the “top-down” mechanism of psychotherapy.  相似文献   

13.

Aim

When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry.

Background

The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses.

Materials and methods

Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2

Results

Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition.

Conclusion

Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed.  相似文献   

14.

Objective

Many studies have reported the prognostic predictive value of CD166 as a cancer stem cell marker in cancers of the digestive system; however, its predictive value remains controversial. Here, we investigate the correlation between CD166 positivity in digestive system cancers and clinicopathological features using meta-analysis.

Methods

A comprehensive search in PubMed and ISI Web of Science through March of 2013 was performed. Only articles containing CD166 antigen immunohistochemical staining in cancers of the digestive system were included,including pancreatic cancer, esophageal cancer, gastric cancer and colorectal cancer. Data comparing 3- and 5-year overall survival along with other clinicopathological features were collected.

Results

Nine studies with 2553 patients who met the inclusion criteria were included for the analysis. The median rate of CD166 immunohistochemical staining expression was 56% (25.4%–76.3%). In colorectal cancer specifically, the results of a fixed-effects model indicated that CD166-positive expression was an independent marker associated with a smaller tumor burden (T category; RR = 0.93, 95%, CI: 0.88–0.98) but worse spread to nearby lymph nodes (N category; RR = 1.17, 95% CI: 1.05–1.30). The 5-year overall survival rate was showed relationship with cytoplasmic positive staining of CD166 (RR = 1.47 95% 1.21–1.79), but no significant association was found in the pool or any other stratified analysis with 3- or 5- year overall survival rate.

Conclusion

Based on the published studies, different cellular location of CD166 has distinct prognostic value and cytoplasmic positive expression is associated with worse prognosis outcome. Besides, our results also find CD166 expression indicate advanced T category and N-positive status in colorectal cancer specifically.  相似文献   

15.

Background

Fibrosis, which is characterized by the pathological accumulation of collagen, is recognized as an important feature of many chronic diseases, and as such, constitutes an enormous health burden. We need non-invasive specific methods for the early diagnosis and follow-up of fibrosis in various disorders. Collagen targeting molecules are therefore of interest for potential in vivo imaging of fibrosis. In this study, we developed a collagen-specific probe using a new approach that takes advantage of the inherent specificity of Glycoprotein VI (GPVI), the main platelet receptor for collagens I and III.

Methodology/Principal Findings

An anti-GPVI antibody that neutralizes collagen-binding was used to screen a bacterial random peptide library. A cyclic motif was identified, and the corresponding peptide (designated collagelin) was synthesized. Solid-phase binding assays and histochemical analysis showed that collagelin specifically bound to collagen (Kd 10−7 M) in vitro, and labelled collagen fibers ex vivo on sections of rat aorta and rat tail. Collagelin is therefore a new specific probe for collagen. The suitability of collagelin as an in vivo probe was tested in a rat model of healed myocardial infarctions (MI). Injecting Tc-99m-labelled collagelin and scintigraphic imaging showed that uptake of the probe occurred in the cardiac area of rats with MI, but not in controls. Post mortem autoradiography and histological analysis of heart sections showed that the labeled areas coincided with fibrosis. Scintigraphic molecular imaging with collagelin provides high resolution, and good contrast between the fibrotic scars and healthy tissues. The capacity of collagelin to image fibrosis in vivo was confirmed in a mouse model of lung fibrosis.

Conclusion/Significance

Collagelin is a new collagen-targeting agent which may be useful for non-invasive detection of fibrosis in a broad spectrum of diseases.  相似文献   

16.

Background

CD166, also known as activated leukocyte cell adhesion molecule (ALCAM), is expressed by various cells in several tissues including cancer. However, the role of CD166 in malignant tumors is controversial, especially in pancreatic cancer. This study aimed to clarify the role and significance of CD166 expression in pancreatic cancer.

Methods

We performed immunohistochemistry and flow cytometry to analyze the expression of CD166 in surgical pancreatic tissues and pancreatic cancer cell lines. The differences between isolated CD166+ and CD166- pancreatic cancer cells were analyzed by invasion and migration assays, and in mouse xenograft models. We also performed quantitative RT-PCR and microarray analyses to evaluate the expression levels of CD166 and related genes in cultured cells.

Results

Immunohistochemistry revealed high expression of CD166 in pancreatic cancer tissues (12.2%; 12/98) compared with that in normal pancreas controls (0%; 0/17) (p = 0.0435). Flow cytometry indicated that CD166 was expressed in 33.8–70.2% of cells in surgical pancreatic tissues and 0–99.5% of pancreatic cancer cell lines. Invasion and migration assays demonstrated that CD166- pancreatic cancer cells showed stronger invasive and migratory activities than those of CD166+ cancer cells (p<0.05). On the other hand, CD166+ Panc-1 cells showed a significantly stronger colony formation activity than that of CD166- Panc-1 cells (p<0.05). In vivo analysis revealed that CD166+ cells elicited significantly greater tumor growth than that of CD166- cells (p<0.05) in both subcutaneous and orthotopic mouse tumor models. mRNA expression of the epithelial-mesenchymal transition activator Zeb1 was over-expressed in CD166- cells (p<0.001). Microarray analysis showed that TSPAN8 and BST2 were over-expressed in CD166+ cells, while BMP7 and Col6A1 were over-expressed in CD166- cells.

Conclusions

CD166+ pancreatic cancer cells are strongly tumorigenic, while CD166- pancreatic cancer cells exhibit comparatively stronger invasive and migratory activities. These findings suggest that CD166 expression is related to different functions in pancreatic cancer cells.  相似文献   

17.

Background

In one group of gene mutations that cause photoreceptor degeneration in human patients, guanylyl cyclase is overactive in the dark. The ensuing excess opening of cGMP-gated cation channels causes intracellular calcium to rise to toxic levels. The Y99C mutation in guanylate cyclase-activating protein 1 (GCAP1) has been shown to act this way. We determined whether prolonged light exposure, which lowers cGMP levels through activation of phototransduction, might protect photoreceptors in a line of transgenic mice carrying the GCAP1-Y99C.

Methodology/Principal Findings

We reared cohorts of GCAP1-Y99C transgenic mice under standard cyclic, constant dark and constant light conditions. Mouse eyes were analyzed by histology and by immunofluorescence for GFAP upregulation, a non-specific marker for photoreceptor degeneration. Full-field electroretinograms (ERGs) were recorded to assess retinal function. Consistent with our hypothesis, constant darkness accelerated disease, while continuous lighting arrested photoreceptor degeneration.

Conclusions/Significance

In contrast to most forms of retinal degeneration, which are exacerbated by increased exposure to ambient light, a subset with mutations that cause overly active guanylyl cyclase and high intracellular calcium benefitted from prolonged light exposure. These findings may have therapeutic implications for patients with these types of genetic defects.  相似文献   

18.

Background

(R)-2-Hydroxy-4-phenylbutyric acid [(R)-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R)-HPBA synthetic processes remain unsatisfactory.

Methodology/Principal Findings

The Y52L/F299Y mutant of NAD-dependent d-lactate dehydrogenase (d-nLDH) in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA). The mutant d-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3) to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R)-HPBA from OPBA. The biocatalysis conditions were then optimized.

Conclusions/Significance

Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R)-HPBA in 90 min. Given its high product enantiomeric excess (>99%) and productivity (47.9 mM h−1), the constructed coupling biocatalysis system is a promising alternative for (R)-HPBA production.  相似文献   

19.

Purpose

Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

Methods

Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent.

Results

The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes.

Conclusion

90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.  相似文献   

20.

Purpose

The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters.

Methods

First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4 radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell''s differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI.

Results

The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4 from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI.

Conclusions

This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号