首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER.  相似文献   

2.
Jin H  Yan Z  Nam KH  Li J 《Molecular cell》2007,26(6):821-830
UDP-glucose:glycoprotein glucosyltransferase (UGGT) is a presumed folding sensor of protein quality control in the endoplasmic reticulum (ER). Previous biochemical studies with nonphysiological substrates revealed that UGGT can glucosylate nonnative glycoproteins by recognizing subtle folding defects; however, its physiological function remains undefined. Here, we show that mutations in the Arabidopsis EBS1 gene suppressed the growth defects of a brassinosteroid (BR) receptor mutant, bri1-9, in an allele-specific manner by restoring its BR sensitivity. Using a map-based cloning strategy, we discovered that EBS1 encodes the Arabidopsis homolog of UGGT. We demonstrated that bri1-9 is retained in the ER through interactions with several ER chaperones and that ebs1 mutations significantly reduce the stringency of the retention-based ER quality control, allowing export of the structurally imperfect yet biochemically competent bri1-9 to the cell surface for BR perception. Thus, our discovery provides genetic support for a physiological role of UGGT in high-fidelity ER quality control.  相似文献   

3.
The endoplasmic reticulum (ER) is the major site for folding and sorting of newly synthesized secretory cargo proteins. One central regulator of this process is the quality control machinery, which retains and ultimately disposes of misfolded secretory proteins before they can exit the ER. The ER quality control process is highly effective and mutations in cargo molecules are linked to a variety of diseases. In mammalian cells, a large number of secretory proteins, whether membrane bound or soluble, are asparagine (N)-glycosylated. Recent attention has focused on a sugar transferase, UDP-Glucose: glycoprotein glucosyl transferase (UGGT), which is now recognized as a constituent of the ER quality control machinery. UGGT is capable of sensing the folding state of glycoproteins and attaches a single glucose residue to the Man9GlcNAc2 glycan of incompletely folded or misfolded glycoproteins. This enables misfolded glycoproteins to rebind calnexin and reenter productive folding cycles. Prolonging the time of glucose addition on misfolded glycoproteins ultimately results in either the proper folding of the glycoprotein or its presentation to an ER associated degradation machinery.  相似文献   

4.
Substrate-specific requirements for UGT1-dependent release from calnexin   总被引:2,自引:0,他引:2  
Newly synthesized glycoproteins displaying monoglucosylated N-glycans bind to the endoplasmic reticulum (ER) chaperone calnexin, and their maturation is catalyzed by the calnexin-associated oxidoreductase ERp57. Folding substrates are eventually released from calnexin, and terminal glucoses are removed from N-glycans. The UDP-glucose:glycoprotein glucosyltransferase (UGT1, UGGT, GT) monitors the folding state of polypeptides released from calnexin and adds back a glucose residue on N-glycans of nonnative polypeptides, thereby prolonging retention in the calnexin chaperone system for additional folding attempts. Here we show that for certain newly synthesized glycoproteins UGT1 deletion has no effect on binding to calnexin. These proteins must normally complete their folding program in one binding event. Other proteins normally undergo multiple binding events, and UGT1 deletion results in their premature release from calnexin. For other proteins, UGT1 deletion substantially delays release from calnexin, unexpectedly showing that UGT1 activity might be required for a structural maturation needed for substrate dissociation from calnexin and export from the ER.  相似文献   

5.
6.
In glycoprotein quality control system in the endoplasmic reticulum (ER), UGGT (UDP-glucose:glycoprotein glucosyltransferase) and glucosidase II (G-II) play key roles. UGGT serves as a glycoprotein folding sensor by virtue of its unique specificity to glucosylate glycoproteins at incompletely folded stage. By using various UDP-Glc analogues, we first analyzed donor specificity of UGGT, which was proven to be rather narrow. However, marginal activity was observed with UDP-galactose and UDP-glucuronic acid as well as with 3-, 4- and 6-deoxy glucose analogues to give corresponding transfer products. Intriguingly, G-II smoothly converted all of them back to Man(9)GlcNAc(2), providing an indication that G-II has a promiscuous activity as a broad specificity hexosidase.  相似文献   

7.
UDP-glucose:glycoprotein glucosyltransferase (UGT) is a soluble protein of the endoplasmic reticulum (ER) that operates as a gatekeeper for quality control by preventing transport of improperly folded glycoproteins out of the ER. We report the isolation of two cDNAs encoding human UDP-glucose:glycoprotein glucosyltransferase homologues. HUGT1 encodes a 1555 amino acid polypeptide that, upon cleavage of an N-terminal signal peptide, is predicted to produce a soluble 173 kDa protein with the ER retrieval signal REEL. HUGT2 encodes a 1516 amino acid polypeptide that also contains a signal peptide and the ER retrieval signal HDEL. HUGT1 shares 55% identity with HUGT2 and 31-45% identity with Drosophila, Caenorhabditis elegans, and Schizosaccharomyces pombe homologues, with most extensive conservation of residues in the carboxy-terminal fifth of the protein, the proposed catalytic domain. HUGT1 is expressed as multiple mRNA species that are induced to similar extents upon disruption of protein folding in the ER. In contrast, HUGT2 is transcribed as a single mRNA species that is not induced under similar conditions. HUGT1 and HUGT2 mRNAs are broadly expressed in multiple tissues and differ slightly in their tissue distribution. The HUGT1 and HUGT2 cDNAs were expressed by transient transfection in COS-1 monkey cells to obtain similar levels of protein localized to the ER. Extracts from HUGT1-transfected cells displayed a 27-fold increase in the transfer of [(14)C]glucose from UDP-[(14)C]glucose to denatured substrates. Despite its high degree of sequence identity with HUGT1, the expressed recombinant HUGT2 protein was not functional under the conditions optimized for HUGT1. Site-directed alanine mutagenesis within a highly conserved region of HUGT1 identified four residues that are essential for catalytic function.  相似文献   

8.
The UDP-Glc:glycoprotein glucosyltransferase (GT), a key player in the endoplasmic reticulum (ER) quality control of glycoprotein folding, only glucosylates glycoproteins displaying non-native conformations. To determine whether GT recognizes folding intermediates or irreparably misfolded species with nearly native structures, we generated and tested as GT substrates neoglycoprotein fragments derived from chymotrypsin inhibitor 2 (GCI2) bearing from 53 to 64 (full-length) amino acids. Fragment conformations mimicked the last stage-folding structures adopted by a glycoprotein entering the ER lumen. GT catalytic efficiency (V(max)/K(m)) remained constant from GCI2-(1-53) to GCI2-(1-58) and then steadily declined to reach a minimal value with GCI2-(1-64). The same parameter showed a direct hyperbolic relationship with solvent accessibility of the single Trp residue but only in fragments exposing hydrophobic amino acid patches. Mutations introduced (GCI2-(1-63)V63S and GCI2-(1-64)V63S) produced slight structural destabilizations but increased GT catalytic efficiency. This parameter presented an inverse exponential relationship with the free energy of unfolding of canonical and mutant fragments. Moreover, the catalytic efficiency showed a linear relationship with the fraction of unfolded species in water. It was concluded that the GT-derived quality control may be operative with nearly native conformers and that no alternative ER-retaining mechanisms are required when glycoproteins approach their proper folding.  相似文献   

9.
10.
11.
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.  相似文献   

12.
Secretory and membrane N-linked glycoproteins undergo folding and oligomeric assembly in the endoplasmic reticulum with the aid of a folding mechanism known as the calnexin cycle. UDP–glucose glycoprotein:glucosyltransferase (UGGT) is the sensor component of the calnexin cycle, which recognizes these glycoproteins when they are incompletely folded, and transfers a glucose residue from UDP–glucose to N-linked Man9-GlcNAc2 glycans. To determine how UGGT recognizes incompletely folded glycoproteins, we used purified enzyme to glucosylate a set of Man9-GlcNAc2 glycopeptide substrates in vitro, and determined quantitatively the glucose incorporation into each glycan by mass spectrometry. A ranked order of glycopeptide specificity was found that provides the criteria for the recognition of substrates by UGGT. The preference for amino-acid residues close to N-linked glycans provides criteria for the recognition of glycopeptide substrates by UGGT.  相似文献   

13.
14.
Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.  相似文献   

15.
UDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma. We detected the expression of two UGGT isoforms, UGGT1 and UGGT2, and demonstrated that both isoforms are active in these cells. Interestingly, the expression of each isoform is regulated by high physiological P4 concentrations. This work provides the first evidence of a hormonal regulation of UGGT isoform expression and activity, which might influence the glycoprotein quality control mechanism. These findings could contribute to the study of pathologies triggered by the accumulation of misfolded proteins.  相似文献   

16.
17.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   

18.
1,4,5-trisphosphate (IP(3))-dependent Ca(2+) signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca(2+) entry (SOCE) is activated during endoplasmic reticulum (ER) Ca(2+) store depletion and is believed to be an essential and ubiquitous component of Ca(2+) signaling pathways. SOCE is thought to function to refill Ca(2+) stores and modulate Ca(2+) signals. Recently, stromal interaction molecule 1 (STIM1) was identified as a putative ER Ca(2+) sensor that regulates SOCE. We cloned a full-length C. elegans stim-1 cDNA that encodes a 530-amino acid protein with approximately 21% sequence identity to human STIM1. Green fluorescent protein (GFP)-tagged STIM-1 is expressed in the intestine, gonad sheath cells, and spermatheca. Knockdown of stim-1 expression by RNA interference (RNAi) causes sterility due to loss of sheath cell and spermatheca contractile activity required for ovulation. Transgenic worms expressing a STIM-1 EF-hand mutant that constitutively activates SOCE in Drosophila and mammalian cells are sterile and exhibit severe pBoc arrhythmia. stim-1 RNAi dramatically reduces STIM-1GFP expression, suppresses the EF-hand mutation-induced pBoc arrhythmia, and inhibits intestinal store-operated Ca(2+) (SOC) channels. However, stim-1 RNAi surprisingly has no effect on pBoc rhythm, which is controlled by intestinal oscillatory Ca(2+) signaling, in wild type and IP(3) signaling mutant worms, and has no effect on intestinal Ca(2+) oscillations and waves. Depletion of intestinal Ca(2+) stores by RNAi knockdown of the ER Ca(2+) pump triggers the ER unfolded protein response (UPR). In contrast, stim-1 RNAi fails to induce the UPR. Our studies provide the first detailed characterization of STIM-1 function in an intact animal and suggest that SOCE is not essential for certain oscillatory Ca(2+) signaling processes and for maintenance of store Ca(2+) levels in C. elegans. These findings raise interesting and important questions regarding the function of SOCE and SOC channels under normal and pathophysiological conditions.  相似文献   

19.
Endoplasmic reticulum (ER)-resident mannosidases generate asparagine-linked oligosaccharide signals that trigger ER-associated protein degradation (ERAD) of unfolded glycoproteins. In this study, we provide in vitro evidence that a complex of the yeast protein disulfide isomerase Pdi1p and the mannosidase Htm1p processes Man(8)GlcNAc(2) carbohydrates bound to unfolded proteins, yielding Man(7)GlcNAc(2). This glycan serves as a signal for HRD ligase-mediated glycoprotein disposal. We identified a point mutation in PDI1 that prevents complex formation of the oxidoreductase with Htm1p, diminishes mannosidase activity, and delays degradation of unfolded glycoproteins in vivo. Our results show that Pdi1p is engaged in both recognition and glycan signal processing of ERAD substrates and suggest that protein folding and breakdown are not separated but interconnected processes. We propose a stochastic model for how a given glycoprotein is partitioned into folding or degradation pathways and how the flux through these pathways is adjusted to stress conditions.  相似文献   

20.
Land A  Braakman I 《Biochimie》2001,83(8):783-790
The lumen of the endoplasmic reticulum (ER) provides a unique folding environment that is distinct from other organelles supporting protein folding. The relatively oxidizing milieu allows the formation of disulfide bonds. N-linked oligosaccharides that are attached during synthesis play multiple roles in the folding process of glycoproteins. They stabilize folded domains and increase protein solubility, which prevents aggregation of folding intermediates. Glycans mediate the interaction of newly synthesized glycoproteins with some resident ER folding factors, such as calnexin and calreticulin. Here we present an overview of the present knowledge on the folding process of the heavily glycosylated human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein in the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号