首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemotherapy resistance accounts for the high mortality rates in patients with advanced cancers. We previously used a genomics approach to determine novel genes associated with this phenomenon and identified secreted protein acidic and rich in cysteine (SPARC) as a chemosensitizer capable of reversing therapy resistance in colorectal cancer cells by enhancing apoptosis in vitro and tumor regression in vivo. Here, we examined the mechanisms by which SPARC enhances apoptosis in the presence of chemotherapy. We show that SPARC potentiates apoptosis by augmenting the signaling cascade in a caspase-8-dependent manner, because apoptosis can be abolished by caspase 8 small interfering RNA in the presence of SPARC. This occurs independently of death receptor activation and leads to downstream involvement of Bid and subsequent apoptosis. Interestingly, this results from an interaction between SPARC and the N terminus of the procaspase-8 DED-containing domain. These exciting findings provide an initial map of the apoptosis signaling events mediated by SPARC and how this can ultimately result in the reversal of chemotherapy resistance and enhanced tumor regression. This signaling cascade can be exploited therapeutically and may have potential clinical implications for patients with advanced and therapy-refractory cancers.  相似文献   

2.
The tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL or Apo2L) and its receptors are members of the tumor necrosis factor superfamily. TRAIL triggers apoptosis by binding to its two proapoptotic receptors DR4 and DR5, a process which is negatively regulated by binding of TRAIL to its two decoy receptors TRID and TRUNDD. Here, we show that TRAIL effectively induces apoptosis in H460 human non-small-cell lung carcinoma cells via cleavage of caspases 8, 9, 7, 3, and BID, release of cytochrome c from the mitochondria, and cleavage of poly (ADP-ribose) polymerase (PARP). However, overexpression of Bcl2 blocked TRAIL-induced apoptosis in H460 cells, which correlated with the Bcl2 protein levels. Importantly, the release of cytochrome c and cleavage of caspase 7 triggered by TRAIL were considerably blocked in Bcl2 overexpressing cells as compared to vector control cells. Moreover, inhibition of TRAIL-mediated cytochrome c release and caspase 7 activation by Bcl2 correlated with the inability of PARP to be cleaved and the inability of the Bcl2 transfectants to undergo apoptosis. Thus, these results suggest that Bcl2 can serve an anti-apoptotic function during TRAIL-dependent apoptosis by inhibiting the release of cytochrome c and activation of caspase 7, thereby blocking caspase 7-dependent cleavage of cellular substrates.  相似文献   

3.
Secreted protein acidic, rich in cysteine (SPARC), is an extracellular matrix protein expressed in many advanced cancers, including malignant gliomas. We and others have previously shown that human glioma cell lines engineered to overexpress SPARC adopt an invasive phenotype. We now show that SPARC expression increases cell survival under stress initiated by serum withdrawal through a decrease in apoptosis. Phosphatidylinositol 3-OH kinase/AKT is a potent pro-survival pathway that contributes to the malignancy of gliomas. Cells expressing SPARC display increased AKT activation with decreased caspase 3/7 activity. Exogenous SPARC rapidly induces AKT phosphorylation, an effect that is blocked by a neutralizing SPARC antibody. Furthermore, AKT activation is essential for the anti-apoptotic effects of SPARC as the decreased apoptosis and caspase activity associated with SPARC expression can be blocked with dominant-negative AKT or a specific AKT inhibitor. As tumor cells face stressful microenvironments particularly during the process of invasion, these results suggest that SPARC functions, in part, to promote tumor progression by enabling tumor cells to survive under stressful conditions.  相似文献   

4.
The prostate‐apoptosis‐response‐gene‐4 (Par‐4) is up‐regulated in prostate cells undergoing programmed cell death. Furthermore, Par‐4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor‐mediated cell death pathways. In this study, we investigated how Par‐4 modulates TRAIL‐mediated apoptosis in TRAIL‐resistant Caki cells. Par‐4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par‐4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase‐8 and the effector caspase‐3, together with an enforced cleavage of XIAP and c‐FLIP. TRAIL‐induced reduction of XIAP and c‐FLIP protein levels in Par‐4 overexpressing cells was prevented by z‐VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL‐treated Par‐4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par‐4 recovered Bcl‐2 level to basal level induced by wild type Par‐4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par‐4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par‐4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par‐4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl‐2, Akt, and NF‐κB. J. Cell. Biochem. 109: 885–895, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Programmed cell death (apoptosis) is critical for normal brain morphogenesis and may be triggered by neurotrophic factor deprivation or irreparable DNA damage. Members of the Bcl2 and caspase families regulate neuronal responsiveness to trophic factor withdrawal; however, their involvement in DNA damage-induced neuronal apoptosis is less clear. To define the molecular pathway regulating DNA damage-induced neural precursor cell apoptosis, we have examined the effects of drug and gamma-irradiation-induced DNA damage on telencephalic neural precursor cells derived from wild-type embryos and mice with targeted disruptions of apoptosis-associated genes. We found that DNA damage-induced neural precursor cell apoptosis, both in vitro and in vivo, was critically dependent on p53 and caspase 9, but neither Bax nor caspase 3 expression. Neural precursor cell apoptosis was also unaffected by targeted disruptions of Bclx and Bcl2, and unlike neurotrophic factor-deprivation-induced neuronal apoptosis, was not associated with a detectable loss of cytochrome c from mitochondria. The apoptotic pathway regulating DNA damage-induced neural precursor cell death is different from that required for normal brain morphogenesis, which involves both caspase 9 and caspase 3 but not p53, indicating that additional apoptotic stimuli regulate neural precursor cell numbers during telencephalic development.  相似文献   

6.
Grim encodes a protein required for programmed cell death in DROSOPHILA: The Grim N-terminus induces apoptosis by disrupting IAP blockage of caspases; however, N-terminally-deleted Grim retains pro apoptotic activity. We describe GH3, a 15 amino acid internal Grim domain absolutely required for its proapoptotic activity and sufficient to induce cell death when fused to heterologous carrier proteins. A GH3 homology region is present in the Drosophila proapoptotic proteins Reaper and Sickle. The GH3 domain and the homologous regions in Reaper and Sickle are predicted to be structured as amphipathic alpha-helixes. During apoptosis induction, Grim colocalizes with mitochondria and cytochrome c in a GH3-dependent but N-terminal- and caspase activity-independent manner. When Grim is overexpressed in vivo, both the N-terminal and the GH3 domains are equally necessary, and cooperate for apoptosis induction. The N-terminal and GH3 Grim domains thus activate independent apoptotic pathways that synergize to induce programmed cell death efficiently.  相似文献   

7.
Cernumidine (CER) is a guanidinic alkaloid isolated from Solanum cernuum leaves. In this work, we investigated the cytotoxicity, chemosensitizing effect of cernumidine to cisplatin (cDDP) and the possible mechanism of action of the combination on bladder cancer cells. Cernumidine showed cytotoxicity and could sensitize bladder cancer cells to cisplatin. The combination of CER+cDDP inhibited cell migration on T24 cells. CER+cDDP down‐regulated MMP‐2/9 and p‐ERK1/2, while it increased EGFR activity corroborating the observed cell migration inhibition. Down‐regulation of Bcl‐2 and up‐regulation pro‐apoptotic Bax and further depletion of the mitochondrial membrane potential (ΔΨm) indicates that mitochondria play a central role in the combination treatment inducing the mitochondrial signaling pathway of apoptosis in T24 cells. Our data showed that the alkaloid cernumidine is worthy of further studies as a chemosensitizing agent to be used in complementary chemotherapy.  相似文献   

8.
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl‐2 family but also dynamin‐related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl‐2 family members and active participation of fission–fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl‐2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl‐1.  相似文献   

9.
This study investigates apoptotic effects of protein kinase C (PKC) delta and theta in neuroblastoma cells. 12-O-tetradecanoylphorbol-13-acetate induces apoptosis in SK-N-BE(2) neuroblastoma cells overexpressing PKCdelta or PKCtheta, but not PKC epsilon. The PKC inhibitor GF109203X does not suppress this apoptotic effect, suggesting that it is independent of the catalytic activity of PKC. The isolated catalytic domains of PKCdelta and PKCtheta or the regulatory domain (RD) of PKCtheta also induce apoptosis in neuroblastoma cells. The apoptotic responses are suppressed by caspase inhibition and by Bcl-2 overexpression. The PKCtheta RD induced apoptosis also in Jurkat cells. Colocalisation analysis revealed that the PKCtheta RD primarily localises to the Golgi complex. The C1b domain is required for this localisation and removal of the C1b domain results in a PKCtheta construct that does not induce apoptosis. This suggests that the PKCtheta RD has apoptotic activity and that Golgi localisation may be important for this effect.  相似文献   

10.
We have previously shown that in vivo renal ischemia/reperfusion results in ATP depletion, oxidant production, and manganese superoxide dismutase (MnSOD) inactivation. Current studies were designed to compare the effect of ATP depletion (Antimycin A treatment) on cell death pathways using renal proximal tubular cells and identical cells that overexpress MnSOD. ATP depletion in wild-type cells induced an apoptotic cascade that involved caspase 9 activation; MnSOD overexpressing cells afforded protection against apoptosis. This protection did not appear to involve a cytochrome c-related mechanism, but may be related to altered levels of nitric oxide within the cell. Further studies suggested that nitric oxide was required to protect the renal cells from caspase-mediated cell death. Interestingly, treatment of renal cell extracts with reductants (DTT and ascorbate) enhanced caspase activation. Taken together, these results suggest that cysteine nitrosylation may be playing a role in caspase dysfunction in cells overexpressing MnSOD following ATP depletion.  相似文献   

11.
12.
Protein kinase Cdelta (PKCdelta) is involved in the apoptosis of various cells in response to diverse stimuli. In this study, we characterized the role of PKCdelta in the apoptosis of C6 glioma cells in response to etoposide. We found that etoposide induced apoptosis in the C6 cells within 24 to 48 h and arrested the cells in the G(1)/S phase of the cell cycle. Overexpression of PKCdelta increased the apoptotic effect induced by etoposide, whereas the PKCdelta selective inhibitor rottlerin and the PKCdelta dominant-negative mutant K376R reduced this effect compared to control cells. Etoposide-induced tyrosine phosphorylation of PKCdelta and its translocation to the nucleus within 3 h was followed by caspase-dependent cleavage of the enzyme. Using PKC chimeras, we found that both the regulatory and catalytic domains of PKCdelta were necessary for its apoptotic effect. The role of tyrosine phosphorylation of PKCdelta in the effects of etoposide was examined using cells overexpressing a PKCdelta mutant in which five tyrosine residues were mutated to phenylalanine (PKCdelta5). These cells exhibited decreased apoptosis in response to etoposide compared to cells overexpressing PKCdelta. Likewise, activation of caspase 3 and the cleavage of the PKCdelta5 mutant were significantly lower in cells overexpressing PKCdelta5. Using mutants of PKCdelta altered at individual tyrosine residues, we identified tyrosine 64 and tyrosine 187 as important phosphorylation sites in the apoptotic effect induced by etoposide. Our results suggest a role of PKCdelta in the apoptosis induced by etoposide and implicate tyrosine phosphorylation of PKCdelta as an important regulator of this effect.  相似文献   

13.
The effect of Bad overexpression on apoptosis was demonstrated by a mouse Bad transgene stably expressed in NIH/3T3 cells. The cells overexpressing Bad treated with either serum starvation or ceramide showed apoptotic characteristics evident at 18 and 8 h, respectively. Whether serum deprivation and ceramide utilize a common death pathway requires further investigation. The time for the first apoptosis detection was shortened to 2 h and was prominent at 4 h, while above that time cells were maintained under serum-depleted conditions in the presence of ceramide (40 microM). Further investigation revealed that the activity of caspase-3 (CPP32) was elevated after ceramide treatment in Bad-transfected cells compared to that of the cells without Bad transfection, indicating the involvement of caspase cascade. Furthermore, the Bad-transfected cells showed reduced phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, we hypothesize that Bad-overexpressing NIH/3T3 cells in the presence of ceramide undergo apoptosis by activating caspase cascade. Simultaneously, the cell survival pathway was blocked possibly by inactivation of the MAPK pathway such as the down-regulation of ERK.  相似文献   

14.
Bcl‐2 is an anti‐apoptotic protein that inhibits apoptosis elicited by multiple stimuli in a large variety of cell types. BMRP (also known as MRPL41) was identified as a Bcl‐2 binding protein and shown to promote apoptosis. Previous studies indicated that the amino‐terminal two‐thirds of BMRP contain the domain(s) required for its interaction with Bcl‐2, and that this region of the protein is responsible for the majority of the apoptosis‐inducing activity of BMRP. We have performed site‐directed mutagenesis analyses to further characterize the BMRP/Bcl‐2 interaction and the pro‐apoptotic activity of BMRP. The results obtained indicate that the 13–17 amino acid region of BMRP is necessary for its binding to Bcl‐2. Further mutagenesis of this motif shows that amino acid residue aspartic acid (D) 16 of BMRP is essential for the BMRP/Bcl‐2 interaction. Functional analyses conducted in mammalian cells with BMRP site‐directed mutants BMRP(13Ala17) and BMRP(D16A) indicate that these mutants induce apoptosis through a caspase‐mediated pathway, and that they kill cells slightly more potently than wild‐type BMRP. Bcl‐2 is still able to counteract BMRP(D16A)‐induced cell death significantly, but not as completely as when tested against wild‐type BMRP. These results suggest that the apoptosis‐inducing ability of wild‐type BMRP is blocked by Bcl‐2 through several mechanisms. J. Cell. Biochem. 113: 3498–3508, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Kaempferol (3,4′,5,7‐tetrahydroxyflavone) is a flavonoid with anti‐ and pro‐oxidant activity present in various natural sources. Kaempferol has been shown to posses anticancer properties through the induction of the apoptotic program. Here we report that treatment of the chronic myelogenous leukemia cell line K562 and promyelocitic human leukemia U937 with 50 µM kaempferol resulted in an increase of the antioxidant enzymes Mn and Cu/Zn superoxide dismutase (SOD). Kaempferol treatment induced apoptosis by decreasing the expression of Bcl‐2 and increasing the expressions of Bax. There were also induction of mitochondrial release of cytochrome c into cytosol and significant activation of caspase‐3, and ‐9 with PARP cleavage. Kaempferol treatment increased the expression and the mitochondria localization of the NAD‐dependent deacetylase SIRT3. K562 cells stably overexpressing SIRT3 were more sensitive to kaempferol, whereas SIRT3 silencing did not increase the resistance of K562 cells to kaempferol. Inhibition of PI3K and de‐phosphorylation of Akt at Ser473 and Thr308 was also observed after treating both K562 and U937 cells with kaempferol. In conclusion our study shows that the oxidative stress induced by kaempferol in K562 and U937 cell lines causes the inactivation of Akt and the activation of the mitochondrial phase of the apoptotic program with an increase of Bax and SIRT3, decrease of Bcl‐2, release of cytochrome c, caspase‐3 activation, and cell death. J. Cell. Biochem. 106: 643–650, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Androgen‐independent prostate cancers express high levels of Bcl‐2, and this over‐expression of Bcl‐2 protects prostate cancer cells from undergoing apoptosis. Ursolic acid (UA) has demonstrated an anti‐proliferative effect in various tumor types. The aim of this study is to evaluate the difference between UA‐induced apoptosis in androgen‐dependent prostate cancer cell line LNCaP cells and androgen‐independent prostate cancer cell line LNCaP‐AI cells and to reveal the molecular mechanisms underlying the apoptosis. We found that UA treatment in vitro can effectively induce apoptosis in LNCaP and LNCaP‐AI cells. UA can overcome Bcl‐2‐mediated resistance to apoptosis in LNCaP‐AI cells. Intrinsic apoptotic pathways can be triggered by UA treatment because c‐Jun N‐terminal kinase (JNK) is activated and subsequently provokes Bcl‐2 phosphorylation and degradation, inducing activation of caspase‐9. Although further evaluation is clearly needed, the present results suggest the potential utility of UA as a novel therapeutic agent in advanced prostate cancer. J. Cell. Biochem. 109: 764–773, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
Mitochondrial outer membrane permeabilization and the release of intermembrane space proteins, such as cytochrome c, are early events during intrinsic (mitochondria-mediated) apoptotic signaling. Although this process is generally accepted to require the activation of Bak or Bax, the underlying mechanism responsible for their activation during true intrinsic apoptosis is not well understood. In the current study, we investigated the molecular requirements necessary for Bak activation using distinct clones of Bax-deficient Jurkat T-lymphocytes in which the intrinsic pathway had been inhibited. Cells stably overexpressing Bcl-2/Bcl-x(L) or stably depleted of Apaf-1 were equally resistant to apoptosis induced by the DNA-damaging anticancer drug etoposide as determined by phosphatidylserine externalization and caspase activation. Strikingly, characterization of mitochondrial apoptotic events in all three drug-resistant cell lines revealed that, without exception, resistance to apoptosis was associated with an absence of Bak activation, cytochrome c release, and mitochondrial membrane depolarization. Furthermore, we found that etoposide-induced apoptosis and mitochondrial events were inhibited in cells stably overexpressing either full-length X-linked inhibitor of apoptosis protein (XIAP) or the BIR1/BIR2 domains of XIAP. Combined, our findings suggest that caspase-mediated positive amplification of initial mitochondrial changes can determine the threshold for irreversible activation of the intrinsic apoptotic pathway.  相似文献   

19.
Caspase-dependent and -independent death pathways in cancer therapy   总被引:7,自引:0,他引:7  
The majority of current anticancer therapies induce tumor cell death through the induction of apoptosis. Alterations in the apoptotic pathways may determine tumor resistance to these therapies. Activation of the proteolytic cascade involving caspase family members is a critical component of the execution of cell death in apoptotic cells. However, recent studies suggest that cell death can proceed in the absence of caspases. In this review we describe the role of caspase-dependent and -independent pathways as targets for anticancer treatment; better understanding of diverse modes of tumor cell death will help to avoid ineffective treatment and provide a molecular basis for the new strategies targeting caspase-independent death pathways in apoptosis-resistant forms of cancer.  相似文献   

20.
Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-xL were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-xL-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号