首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose

In some pathological conditions carnitine concentration is high while in othersitis low.In bothcases,cardiac arrhythmiascan occur and lead to sudden cardiac death. It has been proposed that in ischaemia, acylcarnitine (acyl-CAR), but not carnitine, is involved in arrhythmiasthrough modulation of ionic currents. We studied the effects of acyl-CARs on hERG, KIR2.1 and Kv7.1/minKchannels (channels responsible for IKR, IK1 and IKS respectively).

Experimental approach

HEK293 cells stably expressing hERG, KIR2.1 or Kv7.1/minK were studied using the patch clamp technique. Free carnitine (CAR) and acyl-CAR derivatives from medium- (C8 and C10) and long-chain (C16 and C18∶1) fatty acids were applied intra- and extracellularly at different concentrations. Forstudies onhERG, C16 and C18∶1 free fatty acid were also used.

Key results

Extracellular long-chain (LCAC), but not medium-chain, acyl-CAR,induced an increase of IhERG amplitude associated with a dose-dependent speeding of deactivation kinetics. They had no effect on KIR2.1 or Kv7.1/minK currents.Computer simulations of these effects wereconsistent with changes in action potential profile.

Conclusions and applications

Extracellular LCAC tonically regulates IhERG amplitude and kineticsunder physiological conditions. This modulation maycontribute tothe changes in action potential duration thatprecede cardiac arrhythmias in ischaemia, diabetes and primary systemic carnitine deficiency.  相似文献   

2.
Guo X  Gao X  Wang Y  Peng L  Zhu Y  Wang S 《PloS one》2012,7(2):e31545

Introduction

The function of the repolarization reserve in the prevention of ventricular arrhythmias during cardiac ischemia/reperfusion and the impact of ischemia on slowly activated delayed rectifier potassium current (IKs) channel subunit expression are not well understood.

Methods and Results

The responses of monophasic action potential duration (MAPD) prolongation and triangulation were investigated following an L-768,673-induced blockade of IKs with or without ischemia/reperfusion in a rabbit model of left circumflex coronary artery occlusion/reperfusion. Ischemia/reperfusion and IKs blockade were found to significantly induce MAPD90 prolongation and increase triangulation at the epicardial zone at 45 min, 60 min, and 75 min after reperfusion, accompanied with an increase in premature ventricular beats (PVBs) during the same period. Additionally, IKs channel subunit expression was examined following transient ischemia or permanent infarction and changes in monophasic action potential (MAP) waveforms challenged by β-adrenergic stimulation were evaluated using a rabbit model of transient or chronic cardiac ischemia. The epicardial MAP in the peri-infarct zone of hearts subjected to infarction for 2 days exhibited increased triangulation under adrenergic stimulation. KCNQ1 protein, the α subunit of the IKs channel, was downregulated in the same group. Both findings were consistent with an increased incidence of PVBs.

Conclusion

Blockade of IKs caused MAP triangulation, which precipitated ventricular arrhythmias. Chronic ischemia increased the incidence of ventricular arrhythmias under adrenergic stimulation and was associated with increased MAP triangulation of the peri-infarct zone. Downregulation of KCNQ1 protein may be the underlying cause of these changes.  相似文献   

3.
Wu D  Pan H  Delaloye K  Cui J 《Biophysical journal》2010,99(11):3599-3608
The KCNE1 auxiliary subunit coassembles with the Kv7.1 channel and modulates its properties to generate the cardiac IKs current. Recent biophysical evidence suggests that KCNE1 interacts with the voltage-sensing domain (VSD) of Kv7.1. To investigate the mechanism of how KCNE1 affects the VSD to alter the voltage dependence of channel activation, we perturbed the VSD of Kv7.1 by mutagenesis and chemical modification in the absence and presence of KCNE1. Mutagenesis of S4 in Kv7.1 indicates that basic residues in the N-terminal half (S4-N) and C-terminal half (S4-C) of S4 are important for stabilizing the resting and activated states of the channel, respectively. KCNE1 disrupts electrostatic interactions involving S4-C, specifically with the lower conserved glutamate in S2 (Glu170 or E2). Likewise, Trp scanning of S4 shows that mutations to a cluster of residues in S4-C eliminate current in the presence of KCNE1. In addition, KCNE1 affects S4-N by enhancing MTS accessibility to the top of the VSD. Consistent with the structure of Kv channels and previous studies on the KCNE1-Kv7.1 interaction, these results suggest that KCNE1 alters the interactions of S4 residues with the surrounding protein environment, possibly by changing the protein packing around S4, thereby affecting the voltage dependence of Kv7.1.  相似文献   

4.
The voltage‐gated potassium channel KV7.1 is regulated by non‐pore forming regulatory KCNE β‐subunits. Together with KCNE1, it forms the slowly activating delayed rectifier potassium current IKs. However, where the subunits assemble and which of the subunits determines localization of the IKs‐complex has not been unequivocally resolved yet. We employed trafficking‐deficient KV7.1 and KCNE1 mutants to investigate IKs trafficking using the polarized Madin‐Darby Canine Kidney cell line. We find that the assembly happens early in the secretory pathway but provide three lines of evidence that it takes place in a post‐endoplasmic reticulum compartment. We demonstrate that KV7.1 targets the IKs‐complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical KV7.1 basolateral targeting signals. Our data provide a possible explanation to the fact that KV7.1 can be localized apically or basolaterally in different epithelial tissues and offer a solution to divergent literature results regarding the effect of KCNE subunits on the subcellular localization of KV7.1/KCNE complexes .  相似文献   

5.
6.

Background

Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the pacemaking current, Ih, which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown.

Methodology/Principal Findings

We investigated the effects of Kcne2 gene deletion on Ih properties and excitability in ventrobasal (VB) and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2 +/+ and Kcne2 −/− mice. Kcne2 deletion shifted the voltage-dependence of Ih activation to more hyperpolarized potentials, slowed gating kinetics, and decreased Ih density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4), although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2 −/− neurons.

Conclusions/Significance

Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of various disorders of consciousness.  相似文献   

7.

Background

Patients with inherited dilated cardiomyopathy (DCM) frequently die with severe heart failure (HF) or die suddenly with arrhythmias, although these symptoms are not always observed at birth. It remains unclear how and when HF and arrhythmogenic changes develop in these DCM mutation carriers. In order to address this issue, properties of the myocardium and underlying gene expressions were studied using a knock-in mouse model of human inherited DCM caused by a deletion mutation ΔK210 in cardiac troponinT.

Methodology/Principal Findings

By 1 month, DCM mice had already enlarged hearts, but showed no symptoms of HF and a much lower mortality than at 2 months or later. At around 2 months, some would die suddenly with no clear symptoms of HF, whereas at 3 months, many of the survivors showed evident symptoms of HF. In isolated left ventricular myocardium (LV) from 2 month-mice, spontaneous activity frequently occurred and action potential duration (APD) was prolonged. Transient outward (Ito) and ultrarapid delayed rectifier K+ (IKur) currents were significantly reduced in DCM myocytes. Correspondingly, down-regulation of Kv4.2, Kv1.5 and KChIP2 was evident in mRNA and protein levels. In LVs at 3-months, more frequent spontaneous activity, greater prolongation of APD and further down-regulation in above K+ channels were observed. At 1 month, in contrast, infrequent spontaneous activity and down-regulation of Kv4.2, but not Kv1.5 or KChIP2, were observed.

Conclusions/Significance

Our results suggest that at least three steps of electrical remodeling occur in the hearts of DCM model mice, and that the combined down-regulation of Kv4.2, Kv1.5 and KChIP2 prior to the onset of HF may play an important role in the premature sudden death in this DCM model. DCM mice at 1 month or before, on the contrary, are associated with low risk of death in spite of inborn disorder and enlarged heart.  相似文献   

8.
Voltage‐gated K+ channels co‐assemble with auxiliary β subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore‐forming subunits with KCNE1 β subunits generates the repolarizing K+ current IKS. However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life‐threatening long or short QT syndromes. Here, we studied the interactions and voltage‐dependent motions of IKS channel intracellular domains, using fluorescence resonance energy transfer combined with voltage‐clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C‐terminus interacts with the coiled‐coil helix C of the Kv7.1 tetramerization domain. This association is important for IKS channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant‐negative C‐terminal domain. On channel opening, the C‐termini of Kv7.1 and KCNE1 come close together. Co‐expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K+ currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C‐termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation.  相似文献   

9.

Objectives

To investigate the order in which 85 year olds develop difficulty in performing a wide range of daily activities covering basic personal care, household care and mobility.

Design

Cross-sectional analysis of baseline data from a cohort study.

Setting

Newcastle upon Tyne and North Tyneside, UK.

Participants

Individuals born in 1921, registered with participating general practices.

Measurements

Detailed health assessment including 17 activities of daily living related to basic personal care, household care and mobility. Questions were of the form ‘Can you …’ rather than ‘Do you…’ Principal Component Analysis (PCA) was used to confirm a single underlying dimension for the items and Mokken Scaling was used to determine a subsequent hierarchy. Validity of the hierarchical scale was assessed by its associations with known predictors of disability.

Results

839 people within the Newcastle 85+ study for whom complete information was available on self-reported Activities of Daily Living (ADL). PCA confirmed a single underlying dimension; Mokken scaling confirmed a hierarchic scale where ‘Cutting toenails’ was the first item with which participants had difficulty and ‘feeding’ the last. The ordering of loss differed between men and women. Difficulty with ‘shopping’ and ‘heavy housework’ were reported earlier by women whilst men reported ‘walking 400 yards’ earlier. Items formed clusters corresponding to strength, balance, lower and upper body involvement and domains specifically required for balance and upper/lower limb functional integrity.

Conclusion

This comprehensive investigation of ordering of ability in activities in 85 year olds will inform researchers and practitioners assessing older people for onset of disability and subsequent care needs.  相似文献   

10.
The slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of IKs-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in IKs channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.  相似文献   

11.
The slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of IKs-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in IKs channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.  相似文献   

12.

Background

Graduate entry medicine raises new questions about the suitability of students with different backgrounds. We examine this, and the broader issue of effectiveness of selection and assessment procedures.

Methods

The data included background characteristics, academic record, interview score and performance in pre-clinical modular assessment for two years intake of graduate entry medical students. Exploratory factor analysis is a powerful method for reducing a large number of measures to a smaller group of underlying factors. It was used here to identify patterns within and between the selection and performance data.

Principal Findings

Basic background characteristics were of little importance in predicting exam success. However, easily interpreted components were detected within variables comprising the ‘selection’ and ‘assessment’ criteria. Three selection components were identified (‘Academic’, ‘GAMSAT’, ‘Interview’) and four assessment components (‘General Exam’, ‘Oncology’, ‘OSCE’, ‘Family Case Study’). There was a striking lack of relationships between most selection and performance factors. Only ‘General Exam’ and ‘Academic’ showed a correlation (Pearson''s r = 0.55, p<0.001).

Conclusions

This study raises questions about methods of student selection and their effectiveness in predicting performance and assessing suitability for a medical career. Admissions tests and most exams only confirmed previous academic achievement, while interview scores were not correlated with any consequent assessment.  相似文献   

13.

Background and Aims

The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance.

Methods

Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used.

Key Results

The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’.

Conclusions

The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one chromosome region for the trait located on chromosome 4.  相似文献   

14.

Aim

Hydrogen sulfide (H2S) is a promising cardioprotective agent and a potential modulator of cardiac ion currents. Yet its cardiac effects on humans are poorly understood due to lack of functional cardiomyocytes. This study investigates electrophysiological responses of human pluripotent stem cells (hPSCs) derived cardiomyocytes towards H2S.

Methods and Results

Cardiomyocytes of ventricular, atrial and nodal subtypes differentiated from H9 embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were electrophysiologically characterized. The effect of NaHS, a donor of H2S, on action potential (AP), outward rectifier potassium currents (I Ks and I Kr), L-type Ca2+ currents (I CaL) and hyperpolarization-activated inward current (I f) were determined by patch-clamp electrophysiology and confocal calcium imaging. In a concentration-dependent manner, NaHS (100 to 300 µM) consistently altered the action potential properties including prolonging action potential duration (APD) and slowing down contracting rates of ventricular-and atrial-like cardiomyocytes derived from both hESCs and hiPSCs. Moreover, inhibitions of slow and rapid I K (I Ks and I Kr), I CaL and I f were found in NaHS treated cardiomyocytes and it could collectively contribute to the remodeling of AP properties.

Conclusions

This is the first demonstration of effects of H2S on cardiac electrophysiology of human ventricular-like, atrial-like and nodal-like cardiomyocytes. It reaffirmed the inhibitory effect of H2S on I CaL and revealed additional novel inhibitory effects on I f, I Ks and I Kr currents in human cardiomyocytes.  相似文献   

15.

Background

It is estimated that approximately half of the deaths in patients with HF are sudden and that the most likely causes of sudden death are lethal ventricular tachyarrhythmias such as ventricular tachycardia (VT) or fibrillation (VF). However, the precise mechanism of ventricular tachyarrhythmias remains unknown. The KCNH2 channel conducting the delayed rectifier K+ current (IKr) is recognized as the most susceptible channel in acquired long QT syndrome. Recent findings have revealed that not only suppression but also enhancement of IKr increase vulnerability to major arrhythmic events, as seen in short QT syndrome. Therefore, we investigated the existence of a circulating KCNH2 current-modifying factor in patients with HF.

Methodology/Principal Findings

We examined the effects of serum of HF patients on recombinant IKr recorded from HEK 293 cells stably expressing KCNH2 by using the whole-cell patch-clamp technique. Study subjects were 14 patients with non-ischemic HF and 6 normal controls. Seven patients had a history of documented ventricular tachyarrhythmias (VT: 7 and VF: 1). Overnight treatment with 2% serum obtained from HF patients with ventricular arrhythmia resulted in a significant enhancement in the peaks of IKr tail currents compared to the serum from normal controls and HF patients without ventricular arrhythmia.

Conclusions/Significance

Here we provide the first evidence for the presence of a circulating KCNH2 channel activator in patients with HF and ventricular tachyarrhythmias. This factor may be responsible for arhythmogenesis in patients with HF.  相似文献   

16.

Aim

To develop and test a new adverse drug reaction (ADR) causality assessment tool (CAT).

Methods

A comparison between seven assessors of a new CAT, formulated by an expert focus group, compared with the Naranjo CAT in 80 cases from a prospective observational study and 37 published ADR case reports (819 causality assessments in total).

Main Outcome Measures

Utilisation of causality categories, measure of disagreements, inter-rater reliability (IRR).

Results

The Liverpool ADR CAT, using 40 cases from an observational study, showed causality categories of 1 unlikely, 62 possible, 92 probable and 125 definite (1, 62, 92, 125) and ‘moderate’ IRR (kappa 0.48), compared to Naranjo (0, 100, 172, 8) with ‘moderate’ IRR (kappa 0.45). In a further 40 cases, the Liverpool tool (0, 66, 81, 133) showed ‘good’ IRR (kappa 0.6) while Naranjo (1, 90, 185, 4) remained ‘moderate’.

Conclusion

The Liverpool tool assigns the full range of causality categories and shows good IRR. Further assessment by different investigators in different settings is needed to fully assess the utility of this tool.  相似文献   

17.

Background and Aims

Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, ‘FR13A’ and ‘Arborio Precoce’, which show opposite traits in flooding response in terms of internode elongation and survival.

Methods

The growth and survival of rice varieties under submergence was investigated in the leaf sheath of ‘FR13A’ and ‘Arborio Precoce’. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH2-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively.

Key Results

Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. ‘Arborio Precoce’, which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. ‘FR13A’, which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in ‘FR13A’ but not in ‘Arborio Precoce’.

Conclusions

While ethylene controls aerenchyma formation in the fast-elongating ‘Arborio Precoce’ variety, in ‘FR13A’ ROS accumulation plays an important role.  相似文献   

18.
19.
In the heart, co-assembly of Kv7.1 with KCNE1 produces the slow IKS potassium current, which repolarizes the cardiac action potential and mutations in human Kv7.1 and KCNE1 genes cause cardiac arrhythmias. The proximal Kv7.1 C-terminus binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2) and recently we revealed the competition of PIP2 with the calcified CaM N-lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor a LQT mutation. Data indicated that PIP2 and Ca2+-CaM perform the same function on IKS channel gating to stabilize the channel open state. Here we show that similar features were observed for Kv7.1 currents expressed alone. We also find that conservation of homologous residues in helix B of other Kv7 subtypes confer similar competition of Ca2+-CaM with PIP2 binding to their proximal C-termini and suggest that PIP2-CaM interactions converge to Kv7 helix B to modulates channel activity in a Kv7 subtype-dependent manner.  相似文献   

20.

Background

The future of personalized medicine depends on advanced diagnostic tools to characterize responders and non-responders to treatment. Systems diagnosis is a new approach which aims to capture a large amount of symptom information from patients to characterize relevant sub-groups.

Methodology

49 patients with a rheumatic disease were characterized using a systems diagnosis questionnaire containing 106 questions based on Chinese and Western medicine symptoms. Categorical principal component analysis (CATPCA) was used to discover differences in symptom patterns between the patients. Two Chinese medicine experts where subsequently asked to rank the Cold and Heat status of all the patients based on the questionnaires. These rankings were used to study the Cold and Heat symptoms used by these practitioners.

Findings

The CATPCA analysis results in three dimensions. The first dimension is a general factor (40.2% explained variance). In the second dimension (12.5% explained variance) ‘anxious’, ‘worrying’, ‘uneasy feeling’ and ‘distressed’ were interpreted as the Internal disease stage, and ‘aggravate in wind’, ‘fear of wind’ and ‘aversion to cold’ as the External disease stage. In the third dimension (10.4% explained variance) ‘panting s’, ‘superficial breathing’, ‘shortness of breath s’, ‘shortness of breath f’ and ‘aversion to cold’ were interpreted as Cold and ‘restless’, ‘nervous’, ‘warm feeling’, ‘dry mouth s’ and ‘thirst’ as Heat related. ‘Aversion to cold’, ‘fear of wind’ and ‘pain aggravates with cold’ are most related to the experts Cold rankings and ‘aversion to heat’, ‘fullness of chest’ and ‘dry mouth’ to the Heat rankings.

Conclusions

This study shows that the presented systems diagnosis questionnaire is able to identify groups of symptoms that are relevant for sub-typing patients with a rheumatic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号