首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
迁徙鸟类中途停歇期的生理生态学研究   总被引:5,自引:3,他引:2  
马志军  王勇  陈家宽 《生态学报》2005,25(11):3067-6075
大多数候鸟的迁徙活动由迁徙飞行和中途停歇两个部分组成。在迁徙过程中,鸟类要多次交替经历消耗能量的飞行阶段和积累能量的中途停歇阶段。从鸟类在中途停歇时期的能量积累速度、体重变化模式以及迁徙飞行中的禁食或食物限制、食物种类的改变、中途停歇的能量快速积累过程对消化器官的影响等方面,对目前迁徙鸟类的生理生态学研究成果进行回顾,并提出有待解决的问题及今后的研究方向。  相似文献   

2.
迁徙鸟类对中途停歇地的利用及迁徙对策   总被引:13,自引:3,他引:10  
马志军  李博  陈家宽 《生态学报》2005,25(6):1404-1412
中途停歇地是迁徙鸟类在繁殖地和非繁殖地之间的联系枢纽,对于迁徙鸟类完成其完整的生活史过程具有重要作用。从鸟类的迁徙对策、中途停歇地的选择、鸟类在中途停歇地的停留时间、体重变化和种群特征以及中途停歇地的环境状况等方面,回顾了中途停歇生态学在近年来的研究进展,并提出了在迁徙对策理论的实验研究,小型鸟类在中途停歇地的停歇时间及体重变化的准确确定等目前有待解决的问题。  相似文献   

3.
On the offshore island Helgoland, passerine birds killed by predators (feral cats Felis catus and raptors, mainly sparrowhawks Accipiter nisus ) during stopover were measured and weighed when found freshly killed and still intact. Supplemented by data of migrating birds ringed on Helgoland and predated on the island later on, age and body mass of victims were compared to live birds trapped on Helgoland during ringing operations. In the eleven species considered, most predator kills fell within the lightest 20% of birds measured during ringing, regardless of which type of predator was involved. It seems that the risk of being heavy due to fuel loads with respect to reduced escape performance is overestimated. The higher exposure of light birds due to more intense foraging and displacement to suboptimal habitats is probably of higher biological significance by offering conspicuous prey for predators. The lower risk of heavy birds when prey of different body condition is available for predators has implications for modelling optimal migration behaviour, and predation risk is perhaps not an important factor for migrants when deciding on site use.  相似文献   

4.
Migration remains one of the great mysteries of animal life. Small migratory birds rely on refuelling stopovers after crossing ecological barriers such as deserts or seas. Previous studies have suggested that fuel reserves may determine stopover duration but this hypothesis could not be tested because of methodological limitations. Here, we provide evidence that subcutaneous fat stores determine stopover duration by measuring the permanence of migratory garden warblers (Sylvia borin) on a small Mediterranean island during spring migration with telemetry methods. Garden warblers with large amounts of fat stores departed the island significantly sooner than lean birds. All except one fat bird left the island on the same evening after capture, with a mean total stopover estimate of 8.8 hours. In contrast, the mean estimated total stopover duration of lean birds was 41.3 hours. To our knowledge, this is the first study that measures the true minimum stopover duration of a songbird during migration.  相似文献   

5.
The metaphor of marathon running is inadequate to fully capture the magnitude of long-distance migratory flight of birds. In some respects a journey to the moon seems more appropriate. Birds have no access to supplementary water or nutrition during a multi-day flight, and they must carefully budget their body fat and protein stores to provide both fuel and life support. Fatty acid transport is crucial to successful non-stop migratory flight in birds. Although fat is the most energy-dense metabolic fuel, the insolubility of its component fatty acids makes them difficult to transport to working muscles fast enough to support the highly aerobic exercise required to fly. Recent evidence indicates that migratory birds compensate for this by expressing large amounts of fatty acid transport proteins on the membranes of the muscles (FAT/CD36 and FABPpm) and in the cytosol (H-FABP). Through endogenous mechanisms and/or diet, migratory birds may alter the fatty acid composition of the fat stores and muscle membranes to improve endurance during flight. Fatty acid chain length, degree of unsaturation, and placement of double bonds can affect the rate of mobilization of fatty acids from adipose tissue, utilization of fatty acids by muscles, and whole-animal performance. However, there is great uncertainty about how important fatty acid composition is to the success of migration or whether particular types of fatty acids (e.g., omega-3 or omega-6) are most beneficial. Migratory bats provide an interesting example of evolutionary convergence with birds, which may provide evidence for the generality of the bird model to the evolution of migration by flight in vertebrates. Yet only recently have attempts been made to study bat migration physiology. Many aspects of their fuel metabolism are predicted to be more similar to those of migrant birds than to those of non-flying mammals. Bats may be distinct from most birds in their potential to conserve energy by using torpor between flights, and in the behavioral and physiological trade-offs they may make between migration and reproduction, which often overlap.  相似文献   

6.
Stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotope profiles in feathers of nine migratory bird species trapped in Kenya were examined to test the extent to which they were segregated, geographically or by habitat, during an earlier autumn migration stopover in northeast Africa. We examined whether isotopic differences between species varied between years, and whether the isotope profiles of individual species appeared to be consistent. The relationship between mean feather δ13C, δ15N and δD assorted the migrants into several clustered groups. Similar feather isotope values among successive years revealed that each species tended to return to the same or similar stopover areas and selected habitat and diet that generated similar isotopic signatures. Possible explanations are discussed for the existence of these isotopic groups.  相似文献   

7.
Long-distance migratory passerines initiate testicular recrudescence during spring migration to meet the demands of timely reproduction upon immediate arrival on the breeding grounds. The degree of testicular development is known to depend on environmental factors like stopover habitat quality; reproductive performance may be strongly impacted by testicular maturation upon arrival on the breeding grounds. We investigated the effect of stopover food availability on subsequent reproductive performance in garden warblers (Sylvia borin). Spring migration was simulated by repeated food deprivation and re-feeding to imitate the alternation of flight and stopover periods. During the two final stopover periods, males were either kept under ad libitum food (ad libitum males) or under limited food conditions (limited males). After simulated arrival in the breeding area, manipulation of previous stopover food availability resulted in significantly slower testicular recrudescence (p < 0.001) and decreased plasma testosterone (p < 0.01) in limited males compared to ad libitum males. Body mass change was not significantly different between the two groups (p = 0.38). Limited males also exhibited reduced performance in reproductive behaviours employed in territorial and sexual contexts. Limited males had a longer ‘freezing’ interval (p < 0.05) and decreased activity (p < 0.01) when challenged with a live male decoy. In direct confrontation between limited and ad libitum males in the presence of a female, limited males exhibited significantly fewer behavioural traits in sexual context, i.e. directed to the female (p < 0.001). Therefore, we suggest that conditions encountered during previous migratory stopover may affect subsequent annual reproductive success by influencing key reproductive behaviours.  相似文献   

8.
Dataset on departure fuel loads, stopover length and fuel deposition rate of the European robins Erithacus rubecula during their migration in the Baltic area is presented. We test these empirical data against the predictions of an optimal migration model assuming that robins minimize time spent on migration, and that fuel deposition rate varies stochastically. The latter assumption sets this model apart from the alternative ones and makes it more realistic. In particular, it is applicable in frequently observed situations when fuel deposition rate is negative. Our model assumes stochastic variation of the fuel deposition rate at sites along the migratory rout and thus is applicable when negative values of fuel deposition rate are recorded. The model predicts the relationship between fuel deposition rate and departure fuel load rather well. The agreement between the observed and the predicted values of optimal stopover duration is much poorer. Predictions of optimal migration theory are known to be dependent on the form of flight equation chosen. Our model fits the data best when the costs of transport are low. This supports the idea that transport costs of fuel stores may be low, especially when fuel stores are modest.  相似文献   

9.
Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km flight to their single spring stopover site and thus provide an excellent model in which to determine the energy fuels associated with endurance travel. To this end, we evaluated plasma concentrations of six key metabolites in arriving godwits caught immediately upon landing near their stopover site. Initial metabolite levels were compared with levels after 5 h of inactive rest to determine how flight per se affects energy metabolism. Birds refuelling on the stopover site were also examined. Arriving godwits displayed elevated plasma free fatty acids, glycerol and butyrate, confirming the importance of lipid fuel in the support of extended migratory activity. Further-more, elevated plasma triglycerides in these birds suggest that fatty acid provisioning is facilitated through hepatic synthesis and release of neutral lipids, as previously hypothesized for small migrants with high mass-specific metabolic rates. Finally, elevations in plasma uric acid suggest that protein breakdown contributes to the support of long-distance movement, to possibly maintain citric acid cycle intermediates, gluconeogenesis and/or water balance.  相似文献   

10.
11.
Migratory birds use stopovers to replenish their fuel reserves and they generally spend more time at stopover sites than they do in actual flight. When arriving at a new stopover site birds may need to search extensively to find a suitable feeding area and this search and settling period may affect the duration of stopover. Stopover behaviour can thus have profound effects on the migratory programme and studies on stopover behaviour are important to understand migratory strategies. We followed 51 first‐year garden warblers Sylvia borin with radio‐transmitters at an autumn stopover site on the island of Gotland in southern Sweden. Our aim was to determine the distance birds relocated from the coastal capture site when searching for an area to settle in, and also to establish the duration of stopover and put it in relation to refuelling rate by recapturing a subset of the radio‐tracked individuals. Sixteen birds made an extended stopover (> 2 d), relocated inland from the capture site and settled on average 5.6 km from the capture site, with the longest recorded relocation being fourteen kilometres. Birds that relocated nocturnally settled in areas further away than birds that relocated diurnally. Thirteen birds that continued migration after a short stop carried larger fuel stores than birds that stopped over longer and they remained close to the capture site until departure. Three birds were re‐trapped and showed high fuelling rates, between 0.3 and 1.1 g d–1. They left the stopover site with fuel loads between 40–56 percent of lean body mass, which possibly would have allowed them to reach the Mediterranean area without additional refuelling stops.  相似文献   

12.
Excretion of DDT by migratory birds   总被引:1,自引:0,他引:1  
  相似文献   

13.
Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least‐cost (LCP) or resistance (IBR) distances. We implemented a two‐step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small‐scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human‐modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces.  相似文献   

14.
While it is clear that many migratory behaviors are shared across taxa, generalizable models that predict the distribution and abundance of migrating taxa at the landscape scale are rare. In migratory landbirds, ephemeral concentrations of refueling birds indicate that individual behaviors sometimes produce large epiphenomena in particular geographic locations. Identifying landscape factors that predict the distribution and abundance of birds during migratory stopover will both improve our understanding of the migratory process and assist in broad, regionally relevant conservation. In this study we used autumnal passerine stopover data from a five‐year period and eleven stopover sites across coastal Maine, USA, to test four broad hypotheses of migrant distribution and abundance that have been supported in other regions: a) the community characteristics of the pool of potential migrants, b) a site's local geography, c) landscape composition and configuration measured at different spatial scales, and d) interactions between these factors. Our final model revealed that birds concentrate at ‘habitat islands’, sites that possess a disproportionate percentage of the vegetated habitat in the 4‐km surrounding landscape. The strength of this pattern, however, was inversely proportional to a species' remaining migratory distance. Our results corroborate several studies that emphasize the importance of land cover composition at finer spatial scales (< 80 km2) for predicting the stopover distribution and abundances of migratory birds. This suggests that different migrants likely assess stopover sites with similar mechanisms along their migratory route, and these commonalities may be broadly applied to identify stopover locations of conservation importance across the continent.  相似文献   

15.
16.
Increased production of biomass crops in North America will require new agricultural land, intensify the cultivation of land already under production and introduce new types of biomass crops. Assessing the potential biodiversity impacts of novel agricultural systems is fundamental to the maintenance of biodiversity in agricultural landscapes, yet the consequences of expanded biomass production remain unclear. We evaluate the ability of two candidate second generation biomass feedstocks (switchgrass, Panicum virgatum, and mixed-grass prairie) not currently managed as crops to act as post-breeding and fall migratory stopover habitat for birds. In total, we detected 41 bird species, including grassland specialists and species of state and national conservation concern (e.g. Henslow's Sparrow, Ammodramus henslowii). Avian species richness was generally comparable in switchgrass and prairie and increased with patch size in both patch types. Grassland specialists were less abundant and less likely to occur in patches within highly forested landscapes and were more common and likely to occur in larger patches, indicating that this group is also area-sensitive outside of the breeding season. Variation in the biomass and richness of arthropod food within patches was generally unrelated to richness and abundance metrics. Total bird abundance and that of grassland specialists was higher in patches with greater vegetation structural heterogeneity. Collectively, we find that perennial biomass feedstocks have potential to provide post-breeding and migratory stopover habitat for birds, but that the placement and management of crops will be critical factors in determining their suitability for species of conservation concern. Industrialization of cellulosic bioenergy production that results in reduced crop structural heterogeneity is likely to dramatically reduce the suitability of perennial biomass crops for birds.  相似文献   

17.
Migrating blackcaps (Sylvia atricapilla) were used to test the predictions that (1) the rebuilding of the digestive tract, as reflected by mass-specific consumption of food on the first 2-3 days of a stopover, is faster in birds with access to drinking water than in birds without, and (2) that adipose tissue and pectoral muscles grow faster and to a greater extent in birds with unlimited access to water. We simulated migratory stopover in two experiments. In Experiment I, each of 31 birds was randomly assigned to one of three experimental groups for 6 days. Along with mealworms (~64% water) ad libitum, Group 1 received drinking water ad libitum; Group 2 had 0.5 h/day access to water; and Group 3 had no access to water. In Experiment II, 30 birds were offered a mixed diet for insectivorous birds (~33% water) ad libitum for 6 days, while randomly assigned to two groups: (1) Water ad libitum-control; and (2) 30 min access to water twice a day. We measured lean mass and fat mass using dual energy X-ray absorptiometry, as well as body mass (m(b)), pectoral muscle index (PMI), and daily intake of food and water. Mean daily water intake was significantly different among the groups in both experiments. However, the availability of drinking water positively affected the rates of gain of lean and fat mass only in birds fed with the mixed, relatively dry diet. Furthermore, mass-specific daily food intake was affected by the availability of drinking water only in the mixed diet experiment, in which birds with unlimited access to drinking water reached an asymptote, 1 day earlier than birds in the water-restricted group. We suggest that in birds consuming diets with low water content, the lack of sufficient drinking water may result in slower rebuilding of the digestive tract, or may influence biochemical processes in the gut that result in slower growth of tissue. Although blackcaps obtained sufficient water from preformed and metabolic water to renew lost tissues when eating mealworms, given access to water, the birds drank prodigiously. Our results also suggest that if drinking water is unavailable to migrating blackcaps, their choices are restricted to water-rich foods, which may constrain their rate of feeding and thus the rate at which they deposit fat. Consequently, drinking water may have an important influence on birds' migratory strategies with respect to habitat selection, use of energy, and the saving of time.  相似文献   

18.
Highlights? Adnectins interact with targets using multiple binding modes ? Residues outside of the diversified loops can interact with ligand ? Some fixed scaffold residues contribute to the binding energy ? Adnectins can interact with epitopes that may be inaccessible to antibodies  相似文献   

19.
The scheduling of molt in migratory birds   总被引:2,自引:0,他引:2  
Summary We model the yearly cycle of small migratory birds to explain the variation in scheduling of complete molt, in particular why some birds molt immediately after breeding on the breeding grounds (summer molt) whereas others migrate to their wintering grounds before molt is initiated (winter molt). We employ the method of dynamic programming, because of its suitability for modelling life history traits. Feather quality and latitude entered the model as state variables and were assumed to affect survival rate and reproductive success. Migration and molt were assumed to be associated with increased mortality risks. By changing the parameters in the model we were able to generate most existing molt patterns, including summer and winter molt, biannual (summer and winter) molt, and molt migration. Our model suggests that the scheduling of molt is basically a result of a trade-off between having a high feather quality during breeding versus during the non-breeding period. A high impact of feather quality on survival rate in combination with low costs of molt resulted in biannual molt. Winter molt became more likely as the survival rateper se increased. A low seasonal amplitude in survival rate is a prerequisite for the occurrence of molt migration. Molt duration, migration costs and reproductive successper se were found to have no impact on the timing of molt. We also investigated the effect of benefits from prior occupancy at breeding and winter grounds.  相似文献   

20.
In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m2, birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m2, robins showed an axial preference in the east–west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m2, robins changed direction to a north–south axis. When UV light was combined with yellow light, robins showed easterly ‘fixed direction’ responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号