首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.  相似文献   

2.
Chick high-density culture chondrocytes synthesize cartilage-specific proteoglycans with much structural similarity to the proteoglycans made by cartilage in vivo. Such cultures can be maintained in a defined medium formulated in this laboratory in which chondrogenesis occurs without the addition of serum. The proteoglycans synthesized by the chondrocytes in the presence of defined medium are of a cartilage-specific structure but differ in some aspects from the proteoglycans made in serum-containing medium. While their buoyant density, ability to aggregate with hyaluronic acid, and keratan sulfate chain size are unchanged, the proteoglycans synthesized in defined medium have altered chondroitin sulfate chains. This chondroitin sulfate is of significantly larger size and has a different sulfation pattern relative to that produced in serum-containing medium. The larger size of the chondroitin sulfate results in a larger monomer size of the defined medium proteoglycans. These differences have implications about the regulation of the structure of chondroitin sulfate proteoglycans.  相似文献   

3.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

4.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

5.
Calf (2-3-month-old) and steer (approximately 18-month-old) bovine articular chondrocytes were isolated and cultured as high density monolayers. The proteoglycans synthesized on day 5 during a 15-h period of labeling with [35S]sulfate or [3H]glucosamine were isolated and characterized. The majority (greater than 70%) of the newly synthesized proteoglycans were found in the medium. When viewed in the electron microscope, medium-derived proteoglycans of high buoyant density were longer in calf than in steer. The medium and extracts of the cell layer were pooled and the radiolabeled proteoglycans were fractionated by isopycnic density gradient centrifugation performed under dissociative conditions. The low buoyant density fraction contained, in both calf and steer, small-sized nonaggregating proteoglycans containing chondroitin sulfate. The high buoyant density fraction contained greater than 90% of the newly synthesized proteoglycans. The majority were able to interact with hyaluronic acid to form aggregates. Calf high buoyant density fraction proteoglycans were larger, had longer chondroitin sulfate chains and lower ratios of keratan sulfate chains/chondroitin sulfate chains than steer high buoyant density fraction proteoglycans. These maturation-related differences are typical of those present in the proteoglycans of the calf and steer cartilage matrix from which the chondrocytes were isolated. Experiments with beta-D-xylosides showed that steer cultures had the capacity to synthesize twice as many chondroitin sulfate chains/cell as calf cultures. At each xyloside concentration used, chondroitin sulfate chains were longer in calf than steer. At both ages, chain size decreased with increase in rate of synthesis; the relationship between chain size and rate of synthesis was, however, quite different at the two ages. The results of these studies suggest that articular chondrocytes have an inherent program that determines the quality of proteoglycans synthesized at different ages.  相似文献   

6.
Carbohydrate-containing substances were extracted from non-calcified (NCC) and calcified (CC) portions of bovine costal cartilage with 0.5 M LaCl3 by the method of Mason and his co-workers, followed by dilution of the extract with 9 volumes of water. The precipitate formed on dilution yielded Fr. P, while Fr. S was obtained from the supernatant. Fr. P was separated into two subfractions by gel filtration on Sepharose 2B. The experimental results showed that Fr. P contained proteoglycans with different molecular sizes and compositions, while Fr. S contained proteoglycan, hyaluronic acid, glycoproteins, and glycogen. The present data suggest that in the proteoglycan of Fr. P, the relative content of chondroitin sulfate decreases with a concomitant increment in that of keratan sulfate on calcification. In addition, elevation of the ratio of chondroitin 4-sulfate to chondroitin 6-sulfate, together with a small increment of non-sulfated disaccharide units in the chondroitin sulfate chains appear to occur on calcification. The glycogen content in Fr. S diminished on calcification. The present observations suggest therefore that the remodeling of proteoglycan consumption of glycogen in bovine costal cartilage occur on calcification.  相似文献   

7.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

8.
Sulfated proteoglycans of the dorsal skin of 8.5-day-old chick embryos have been characterized in terms of their extractability from the tissue, solubility, and sedimentation and chromatographic behavior. The proteoglycans described in this communication are those that remain soluble after dialysis against 0.5 m NaCl. Two chondroitin sulfate proteoglycans (PGCS-A and PGCS-C) and a heparan sulfate proteoglycan (PGHS) have been identified. PGCS-A is the only proteoglycan found in the medium in which the skins were cultured. Under associative conditions (0.4 M guanidine-HCl) PGCS-A and PGHS are extracted. The dissociative solvents (4 M guanidine-HCl) extract more PGCS-A and PGCS-C. PGCS-C has been shown to interact with hyaluronic acid to form aggregates. These proteoglycans have densities ranging from 1.49 to at least 1.59 g/ml. In contrast cartilage proteoglycans that can aggregate with hyaluronic acid have a density of at least 1.59 g/ml. It was not possible to determine if the PGCS-C aggregates exist in vivo.  相似文献   

9.
The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid-binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.  相似文献   

10.
Proteoglycans of developing bone   总被引:17,自引:0,他引:17  
We purified and characterized the bone proteoglycans from fetal calves, growing rats, and human fetuses. The major proteoglycan is part of the mineralized tissue matrix and only 10-20% can be extracted prior to demineralization. This bone proteoglycan is a small glycoconjugate (Mr = 80,000-120,000) containing approximately 20-30% protein and either one or two chondroitin sulfate chains (Mr = 40,000) attached to a relatively monodisperse protein core (Mr = 38,000). "O"-linked and "N"-linked oligosaccharide units are also present. Antibodies directed against the protein core of calf bone proteoglycan do not cross-react with cartilage, skin, corneal, or basement membrane proteoglycans in immunoassays and have minimal cross-reactivity with scleral proteoglycans. Quantitative immunoassays and indirect immunofluorescence were used to show that the molecule is localized to forming bone trabeculae and dentin, but not to any other tissue. Osteoblasts and osteoprogenitor cells adjacent to areas undergoing rapid osteogenesis also contain this small proteoglycan. A second proteoglycan (Mr approximately equal to 1,000,000) was extracted from newly forming bone prior to demineralization. This large proteoglycan, which was isolated from the cartilage-free areas of developing intramembranous bone, has a protein core similar to that of the cartilage aggregating proteoglycan and cross-reacts with antisera raised against these cartilage proteoglycans but not with the small mineral-entrapped proteoglycan. It contains larger (Mr = 40,000) and fewer chondroitin sulfate chains than its cartilage-derived analogue, and is localized to the soft connective tissue mesenchyme lying between growing bone trabeculae. More fully formed compact bone did not contain detectable quantities of this proteoglycan.  相似文献   

11.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

12.
Using enzyme-linked immunosorbent assays and radioimmunoassays employing chondroitinase ABC-treated rabbit cartilage proteoglycan, we have shown that approximately one-third of the outbred New Zealand white rabbits we have examined possess naturally occurring antibodies which react with oligosaccharides of hyaluronic acid (independently of chain length) bearing saturated and 4,5-unsaturated glucuronosyl residues at the nonreducing ends. Such antibodies were also found in a similar proportion of rabbits with an experimental inflammatory arthritis. There was a preferential reactions in the majority of sera with unsaturated oligosaccharides of hyaluronic acid. One serum (R64) reacted only with unsaturated oligosaccharides of hyaluronic acid. Sera reacted also with unsaturated (never saturated) oligosaccharides of chondroitin 4-sulfate and with chondroitin 6-sulfate, particularly when chondroitin sulfate oligosaccharides remained bound to a proteoglycan core protein. Reactions were also observed to both unsaturated and saturated oligosaccharides of chondroitin. Some of these sera also reacted with intact hyaluronic acid and chondroitin but never with intact chondroitin sulfate. The antibodies were present in the IgG fraction of four sera studied and in the IgM fraction of one of these sera: they bound through the F(ab')2 region of the molecule. These observations suggest that, in some rabbits, humoral immunity to hyaluronic acid and/or chondroitin sulfate bound to core protein can develop after these reactive glycosaminoglycans have been degraded by eliminases or hydrolases produced by naturally occurring bacteria and rabbit cells, respectively. Immunological studies of proteoglycans and hyaluronic acid treated with eliminases and hydrolases employing rabbit antisera, and possibly those from other species, should be evaluated in the light of these observations.  相似文献   

13.
Explants of cartilage from tibiae of 11-12 days chick embryos were grown in organ culture. To one group hyaluronidase was added to the medium during the first 2 days of culture; the treated tissue was then cultured in medium without enzyme for a further 4 days. Control explants grown in hyaluronidase-free medium for 6 days grew rapidly in size and the total hexosamine content more than doubled during this time. After exposure to hyaluronidase, much of the hexosamine was lost from treated cartilage and appeared in the culture medium, but it was mostly replaced in the tissue during the subsequent recovery period. Analysis of cartilage and medium showed that net synthesis of hexosamine increased greatly in treated cartilage. The proteoglycans were extracted by two procedures from control and treated cartilage after 2, 4 and 6 days in culture. The hydrodynamic sizes of the purified proteoglycans were compared by gel chromatography and the composition of the gel-chromatographic fractions was determined. The proteoglycans from controls did not change during culture, but after exposure to hyaluronidase the proteoglycans from treated cartilage were of much smaller size and lower chondroitin sulphate content. During recovery, even though new proteoglycans were formed, they were nevertheless of smaller size and lower chondroitin sulphate content than control proteoglycans. They gradually became more like control proteoglycans during recovery from treatment, but even after 4 days they were not yet the same. After 2 days of treatment with the enzyme, the chondroitin sulphate in the cartilage was of shorter chain length than in controls but during recovery after 4 and 6 days in culture, the chain lengths in control and treated cartilage were similar. It is concluded that the proteoglycans formed in embryo cartilage in response to their depletion by enzyme treatment contained fewer chondroitin sulphate chains attached to the protein moiety of proteoglycans. This may have resulted from a failure under stress to glycosylate the protein moiety to the usual extent; alternatively the synthesis of normal proteoglycans of low chondroitin sulphate content may have increased, thus changing the proteoglycan population.  相似文献   

14.
Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.  相似文献   

15.
Link proteins are glycoproteins which stabilize aggregates of proteoglycans and hyaluronic acid in cartilage. We recently identified link proteins in canine synovial cell cultures. We now find that link proteins and proteoglycans extracted from these cells under dissociative conditions sediment in the high-buoyant-density fractions of an associative cesium chloride density gradient, suggesting that link proteins interact with high-bouyant-density proteoglycans. In gradients containing [35S]sulfate-labeled synovial cell extracts, 76% of the labeled sulfate and 54% of the uronic acid is found in the high-buoyant-density fractions. Under associative conditions, Sepharose 2B elution profiles of the crude synovial cell extract, synovial cell high-buoyant-density fractions, and culture medium indicate that synovial cell proteoglycans are present in monomeric form, rather than in aggregates. Synovial cell link proteins co-elute with the [35S]sulfate-labeled material under the same conditions. These proteoglycans do not interact in vitro with exogenous hyaluronic acid. Dermatan sulfate, chondroitin sulfate and heparan sulfate are the major cell-associated sulfated glycosaminoglycans synthesized by cultured canine synovial cells, while hyaluronic acid is found in the culture medium. Although the proteoglycans synthesized by cultured synovial cells interact with link proteins, these data indicate that they do not interact with hyaluronic acid to form aggregates.  相似文献   

16.
Cartilage proteoglycans have been well characterized in a number of developing systems, both in vitro and in vivo, but the newly synthesized molecules have been analyzed only from culture material. Because of potential culture artifacts, an attempt was made to characterize the proteoglycans newly synthesized in ovo in chick embryo sternum, tibial epiphysis, and tibial shaft. These in ovo synthesized proteoglycans share many structural features with chick proteoglycans synthesized by chondrocytes in culture including average monomer size, chondroitin sulfate chain size, keratan sulfate chain size, and the ability to aggregate with hyaluronic acid. Moreover, the newly synthesized in ovo proteoglycans, notably those of the tibial epiphysis, display reproducible changes in their structure as a function of embryonic age. These changes correlate with similar changes documented for chick cartilage proteoglycans synthesized in culture. Finally, the proteoglycans synthesized in ovo in the day 17 tibial shaft include, in addition to cartilage proteoglycans, one proteoglycan which seems to be characteristic of bone.  相似文献   

17.
Chondroitin sulfate represents approximately 15% of the 35SO4-labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product.  相似文献   

18.
Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (SLC35D1) encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis. Here we created Slc35d1-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human SLC35D1 cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology.  相似文献   

19.
Non-aggregating dermatan sulphate proteoglycans can be extracted from both fetal and adult human articular cartilage. The dermatan sulphate proteoglycans appear to be smaller in the adult, this presumably being due to shorter glycosaminoglycan chains, and these chains contain a greater proportion of their uronic acid residues as iduronate. Both the adult and fetal dermatan sulphate proteoglycans contain a greater amount of 4-sulphation than 6-sulphation of the N-acetylgalactosamine residues, in contrast with the aggregating proteoglycans, which always show more 6-sulphation on their chondroitin sulphate chains. In the fetus the major dermatan sulphate proteoglycan to be synthesized is DS-PGI, though DS-PGII is synthesized in reasonable amounts. In the adult, however, DS-PGI synthesis is barely detectable relative to DS-PGII, which is still synthesized in substantial amounts. Purification of the dermatan sulphate proteoglycans from adult cartilage is hampered by the presence of degradation products derived from the large aggregating proteoglycans, which possess similar charge, size and density properties, but which can be distinguished by their ability to interact with hyaluronic acid.  相似文献   

20.
Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated [35S]sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (i) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (ii) link-stable proteoglycan aggregates are assembled, (ii) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (iv) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号