首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring regulatory T (nTreg) cells express Foxp3 and were originally discovered as immune suppressors critical for self-tolerance and immune homeostasis. Through yet-to-be-defined mechanisms, nTreg cells were recently shown to convert into proinflammatory cells. Particularly, attenuation of Foxp3 expression led to Th2 conversion of nTreg cells in vivo. In this paper, we demonstrated an nTreg-specific mechanism controlling their Th2 conversion. We found that wild-type nTreg cells expressing reduced levels of Foxp3 but not those expressing no Foxp3 produced the Th2 cytokine IL-4. Intriguingly, IL-4 production by converted nTreg cells is required for Th2 differentiation of coexisting naive CD4 T cells in vivo, suggesting that Th2 conversion of nTreg cells might be critical for directing Th2 immune responses. Th2 conversion of nTreg cells was not due to their inability to become Th1 cells, because IFN-γ was produced by Foxp3-low-expressing cells when IL-4/STAT-6 signaling was abrogated. Surprisingly, however, unlike naive CD4 T cells whose IL-4 production is dependent on STAT-6, Foxp3-low-expressing cells generated IL-4 independent of STAT-6, indicating an intrinsic mechanism that favors nTreg-to-Th2 differentiation. Indeed, compared with naive CD4 T cells, nTreg expressed elevated levels of GATA-3 independent of STAT-6. And GATA-3 was required for nTreg-to-Th2 conversion. Foxp3 may account for this GATA-3 upregulation in nTreg cells, because ectopic expression of Foxp3 preferentially promoted GATA-3 but not T-bet expression. Thus, we have identified an intrinsic mechanism that imposes a Th2/Th1 imbalance and predisposes Foxp3-expressing cells to IL-4 production independent of STAT-6 signaling.  相似文献   

2.
TGF-beta has been shown to be critical in the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Because Th3 cells produce large amounts of TGF-beta, we asked whether induction of Th3 cells in the periphery was a mechanism by which CD4(+)CD25(+) Tregs were induced in the peripheral immune compartment. To address this issue, we generated a TGF-beta1-transgenic (Tg) mouse in which TGF-beta is linked to the IL-2 promoter and T cells transiently overexpress TGF-beta upon TCR stimulation but produce little or no IL-2, IL-4, IL-10, IL-13, or IFN-gamma. Naive TGF-beta-Tg mice are phenotypically normal with comparable numbers of lymphocytes and thymic-derived Tregs. We found that repeated antigenic stimulation of pathogenic myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+)CD25(-) T cells from TGF-beta Tg mice crossed to MOG TCR-Tg mice induced Foxp3 expression in both CD25(+) and CD25(-) populations. Both CD25 subsets were anergic and had potent suppressive properties in vitro and in vivo. Furthermore, adoptive transfer of these induced regulatory CD25(+/-) T cells suppressed experimental autoimmune encephalomyelitis when administrated before disease induction or during ongoing experimental autoimmune encephalomyelitis. The suppressive effect of TGF-beta on T cell responses was due to the induction of Tregs and not to the direct inhibition of cell proliferation. The differentiation of Th3 cells in vitro was TGF-beta dependent as anti-TGF-beta abrogated their development. Thus, Ag-specific TGF-beta-producing Th3 cells play a crucial role in inducing and maintaining peripheral tolerance by driving the differentiation of Ag-specific Foxp3(+) regulatory cells in the periphery.  相似文献   

3.
We developed a transgenic (Tg) mouse that expresses TGF-beta under control of the IL-2 promoter to investigate Th3 cell differentiation both in vitro and in vivo. We previously found that repetitive in vitro Ag stimulation results in constant expression of Foxp3 in TGF-beta-Tg Th3 cells that acquire regulatory function independent of surface expression of CD25. To examine the differentiation and function of Th3 cells in vivo and to compare them with thymic-derived CD4(+)CD25(+) regulatory T cells (Treg), we introduced the TGF-beta transgene into T cells of IL-2-deficient (IL-2(-/-)) mice. We found that the induction, differentiation, and function of TGF-beta-derived Foxp3(+) Th3 cells were independent of IL-2, which differs from thymic Tregs. In an environment that lacks functional CD25(+) thymic-derived Tregs, expression of the TGF-beta transgene in IL-2(-/-) mice led to the induction of distinct CD25(-) regulatory cells in the periphery. These cells expressed Foxp3 and efficiently controlled hyperproliferation of T cells and rescued the IL-2(-/-) mouse from lethal autoimmunity. Unlike IL-2(-/-) animals, TGF-beta/IL-2(-/-) mice had normal numbers of T cells, B cells, macrophages, and dendritic cells and did not have splenomegaly, lymphadenopathy, or inflammation in multiple organs. Accumulation of Foxp3(+) cells over time, however, was dependent on IL-2. Our results suggest that TGF-beta-derived Foxp3(+)CD25(+/-) Th3 regulatory cells represent a different cell lineage from thymic-derived CD25(+) Tregs in the periphery but may play an important role in maintaining thymic Tregs in the peripheral immune compartment by secretion of TGF-beta.  相似文献   

4.
5.
Signaling events affecting thymic selection of un-manipulated polyclonal natural CD25(+)foxp3(+) regulatory T cells (nTreg) have not been established ex vivo. Here, we report a higher frequency of phosphorylated STAT-5 (pSTAT-5) in nTreg cells in the adult murine thymus and to a lesser extent in the periphery, compared to other CD4(+)CD8(-) subsets. In the neonatal thymus, the numbers of pSTAT-5(+) cells in CD25(+)foxp3(-) and nTreg cells increased in parallel, suggesting that pSTAT-5(+)CD25(+)foxp3(-) cells might represent the precursors of foxp3(+) regulatory T cells. This "specific" pSTAT-5 expression detected in nTreg cells ex vivo was likely due to a very recent signal given by IL-2/IL-15 cytokines in vivo since (i) it disappeared rapidly if cells were left unstimulated in vitro and (ii) was also observed if total thymocytes were stimulated in vitro with saturating amounts of IL-2 and/or IL-15 but not IL-7. Interestingly, STAT-5 activation upon IL-2 stimulation correlated better with foxp3 and CD122 than with CD25 expression. Finally, we show that expression of an endogenous superantigen strongly affected the early Treg cell repertoire but not the proportion of pSTAT-5(+) cells within this repertoire. Our results reveal that continuous activation of the CD122/STAT-5 signaling pathway characterize regulatory lineage differentiation in the murine thymus.  相似文献   

6.
7.
Thymus-derived, naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) and Tregs induced in the periphery (iTregs) have both been implicated in regulating immune responses. However, the relationship between these populations in the same host, and their relative contribution to the overall Treg pool, has not been examined. Using a tumor-induced T cell tolerance model, we find that expansion of nTregs and de novo generation of iTregs both contribute to tumor-specific T cell tolerance. In this system in which the number of tumor-specific nTregs can be controlled, the efficiency of nTreg expansion significantly exceeds that of the induction of Tregs from uncommitted progenitors in the tumor-bearing host. However, pre-existing nTregs are neither required for the induction of Tregs nor measurably impact on the extent of their accumulation. Instead, induction of Ag-specific regulatory cells from naive cells is intrinsically influenced by the tumor microenvironment and the presence of tumor Ag.  相似文献   

8.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

9.
10.
Although the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated through binding and activation of the aryl hydrocarbon receptor (AhR), the subsequent biochemical and molecular changes that confer immune suppression are not well understood. Mice exposed to TCDD during an acute B6-into-B6D2F1 graft-vs-host response do not develop disease, and recently this has been shown to correlate with the generation of CD4(+) T cells that express CD25 and demonstrate in vitro suppressive function. The purpose of this study was to further characterize these CD4(+) cells (TCDD-CD4(+) cells) by comparing and contrasting them with both natural regulatory CD4(+) T cells (T-regs) and vehicle-treated cells. Cellular anergy, suppressive functions, and cytokine production were examined. We found that TCDD-CD4(+) cells actively proliferate in response to various stimuli but suppress IL-2 production and the proliferation of effector T cells. Like natural T-regs, TCDD-CD4(+) cells do not produce IL-2 and their suppressive function is contact dependent but abrogated by costimulation through glucocorticoid-induced TNFR (GITR). TCDD-CD4(+) cells also secrete significant amounts of IL-10 in response to both polyclonal and alloantigen stimuli. Several genes were significantly up-regulated in TCDD-CD4(+) cells including TGF-beta3, Blimp-1, and granzyme B, as well as genes associated with the IL12-Rb2 signaling pathway. TCDD-CD4(+) cells demonstrated an increased responsiveness to IL-12 as indicated by the phosphorylation levels of STAT4. Only 2% of TCDD-CD4(+) cells express Foxp3, suggesting that the AhR does not rely on Foxp3 for suppressive activity. The generation of CD4(+) cells with regulatory function mediated through activation of the AhR by TCDD may represent a novel pathway for the induction of T-regs.  相似文献   

11.
IL-2 and TGF-β1 play key roles in the immunobiology of Foxp3-expressing CD25(+)CD4(+) T cells (Foxp3(+)Treg). Administration of these cytokines offers an appealing approach to manipulate the Foxp3(+)Treg pool and treat T cell-mediated autoimmunity such as type 1 diabetes. However, efficacy of cytokine treatment is dependent on the mode of application, and the potent pleiotropic effects of cytokines like IL-2 may lead to severe side effects. In the current study, we used a gene therapy-based approach to assess the efficacy of recombinant adeno-associated virus vectors expressing inducible IL-2 or TGF-β1 transgenes to suppress ongoing β cell autoimmunity in NOD mice. Intramuscular vaccination of recombinant adeno-associated virus to 10-wk-old NOD female mice and a subsequent 3 wk induction of IL-2 was sufficient to prevent diabetes and block the progression of insulitis. Protection correlated with an increased frequency of Foxp3(+)Treg in the periphery as well as in the draining pancreatic lymph nodes and islets. IL-2 induced a shift in the ratio favoring Foxp3(+)Treg versus IFN-γ-expressing T cells infiltrating the islets. Induction of IL-2 had no systemic effect on the frequency or activational status of T cells and NK cells. Induction of TGF-β1 had no effect on the Foxp3(+)Treg pool or the progression of β cell autoimmunity despite induced systemic levels of activated TGF-β1 that were comparable to IL-2. These results demonstrate that inducible IL-2 gene therapy is an effective and safe approach to manipulate Foxp3(+)Treg and suppress T cell-mediated autoimmunity and that under the conditions employed, IL-2 is more potent than TGF-β1.  相似文献   

12.
Corticosteroids (CS) have been shown to exert strong inhibitory effects on dendritic cell (DC) differentiation and function. Those studies were mostly performed with monocyte-derived DC, which represents only one subpopulation from the wide variety of DC types. In the present study the effects of the CS dexamethasone and prednisolone were investigated on the differentiation of CD34(+) hemopoietic progenitor cells into 1) Langerhans cells (LC), which differentiate directly into CD1a(+) DC; and 2) dermal/interstitial DC, which differentiate via a CD14(+)CD1a(-) phenotype into CD14(-)CD1a(+) DC. CS present during the entire 11-day culture period, resulting in fully differentiated CD1a(+) DC, increased the percentage of langerin(+) DC within the CD1a(+) population. In line with these data, CS treatment during the first 6 days of differentiation reduced the development of CD14(+) dermal DC precursors and thereby seemed to support the generation of CD1a(+) LC precursors. Addition of CS from day 6 onward specifically blocked the development of CD1a(+) dermal DC by both inhibition of spontaneous and IL-4-induced differentiation of CD14(+) DC precursors into CD1a(+) DC as well as induction of apoptosis in CD14(+) DC precursors. Apoptosis was not found in CD14(+) macrophage precursors derived from the same CD34(+) progenitors. The development and function of LC were not affected by CS, as demonstrated by a normal T cell stimulatory capacity and IL-12 production. These data demonstrate that CS interfere with the normal development of DC from CD34(+) progenitors by specific induction of apoptosis in precursors of dermal/interstitial DC. In view of the different functional capacities of dermal/interstitial DC and Langerhans cells, this might affect the overall cellular immune response.  相似文献   

13.
14.
15.
TGF-beta induces Foxp3 expression in stimulated T cells. These Foxp3 cells (induced regulatory T cells (iTreg)) share functional and therapeutic properties with thymic-derived Foxp3 regulatory T cells (natural regulatory T cells (nTreg)). We performed a single-cell analysis to better characterize the regulation of Foxp3 in iTreg in vitro and assess their dynamics after transfer in vivo. TGF-beta up-regulated Foxp3 in CD4(+)Foxp3 T cells only when added within a 2- to 3-day window of CD3/CD28 stimulation. Up to 90% conversion occurred, beginning after 1-2 days of treatment. Foxp3 expression strictly required TCR stimulation but not costimulation and was independent of cell cycling. Removal of TGF-beta led to a loss of Foxp3 expression after an approximately 4-day lag. Most iTreg transferred into wild-type mice down-regulated Foxp3 within 2 days, and these Foxp3 cells were concentrated in the blood, spleen, lung, and liver. Few of the Foxp3 cells were detected by 28 days after transfer. However, some Foxp3 cells persisted even to this late time point, and these preferentially localized to the lymph nodes and bone marrow. CXCR4 was preferentially expressed on Foxp3 iTreg within the bone marrow, and CD62L was preferentially expressed on those in the lymph nodes. Like transferred nTreg and in contrast with revertant Foxp3 cells, Foxp3 iTreg retained CD25 and glucocorticoid-induced TNFR family-related gene. Thus, Foxp3 expression in na?ve-stimulated T cells is transient in vitro, dependent on TGF-beta activity within a highly restricted window after activation and continuous TGF-beta presence. In vivo, a subset of transferred iTreg persist long term, potentially providing a lasting source for regulatory activity after therapeutic administration.  相似文献   

16.
Naturally occurring CD4(+)CD25(+) regulatory T (nTreg) cells are essential for maintaining T cell tolerance to self Ags. We show that discrimination of human Treg from effector CD4(+)CD25(+) non-nTreg cells and their selective survival and proliferation can now be achieved using rapamycin (sirolimus). Human purified CD4(+)CD25(high) T cell subsets stimulated via TCR and CD28 or by IL-2 survived and expanded up to 40-fold in the presence of 1 nM rapamycin, while CD4(+)CD25(low) or CD4(+)CD25(-) T cells did not. The expanding pure populations of CD4(+)CD25(high) T cells were resistant to rapamycin-accelerated apoptosis. In contrast, proliferation of CD4(+)CD25(-) T cells was blocked by rapamycin, which induced their apoptosis. The rapamycin-expanded CD4(+)CD25(high) T cell populations retained a broad TCR repertoire and, like CD4(+) CD25(+) T cells freshly obtained from the peripheral circulation, constitutively expressed CD25, Foxp3, CD62L, glucocorticoid-induced TNFR family related protein, CTLA-4, and CCR-7. The rapamycin-expanded T cells suppressed proliferation and effector functions of allogeneic or autologous CD4(+) and CD8(+) T cells in vitro. They equally suppressed Ag-specific and nonspecific responses. Our studies have defined ex vivo conditions for robust expansion of pure populations of human nTreg cells with potent suppressive activity. It is expected that the availability of this otherwise rare T cell subset for further studies will help define the molecular basis of Treg-mediated suppression in humans.  相似文献   

17.
IL-33 administration is associated with facilitation of Th2 responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L (the membrane-bound form of ST2), promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4(+) Foxp3(+) regulatory T cells (Tregs) in mice. IL-33 expands functional myeloid-derived suppressor cells, CD11b(+) cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes an St2-dependent expansion of suppressive CD4(+) Foxp3(+) Tregs, including an ST2L(+) population. IL-33 monotherapy after fully allogeneic mouse heart transplantation resulted in significant graft prolongation associated with increased Th2-type responses and decreased systemic CD8(+) IFN-γ(+) cells. Also, despite reducing overall CD3(+) cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3(+) cells. Whereas control graft recipients displayed increases in systemic CD11b(+) Gr-1(hi) cells, IL-33-treated recipients exhibited increased CD11b(+) Gr-1(int) cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Tregs. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4(+) Foxp3(+) Tregs that underlie IL-33-mediated cardiac allograft survival.  相似文献   

18.
Exosomes released from different types of cells have been proposed to contribute to intercellular communication. We report that thymic exosome-like particles (ELPs) released from cells of the thymus can induce the development of Foxp3(+) regulatory T (Treg) cells in the lung and liver. Thymic ELPs also induce the conversion of thymic CD4(+)CD25(-) T cells into Tregs. Tregs induced by thymic ELPs suppress the proliferation of CD4(+)CD25(-) T cells in vitro and in vivo. We further show that neutralization of TGF-beta in ELPs partially reverses thymic ELP-mediated induction of CD4(+)Foxp3(+) T cells in the lung and liver. This study demonstrates that thymic ELPs participate in the induction of Foxp3(+) Tregs. Also, TGF-beta of thymic ELPs might be required for the generation of Tregs in the peripheral tissues.  相似文献   

19.
As a natural ligand for CD4, IL-16 has been shown to preferentially induce migration in Th1 cells, and, in long-term cultures with IL-2, IL-16 facilitates the expansion of CD4(+)CD25(+) cells. In addition, IL-16 has an immunomodulatory role in asthmatic inflammation, as exogenous administration significantly reduces inflammation and airway hyperreactivity. The mechanism for this, however, is not clear. Based on its functional characteristics and potential immunomodulatory role, we investigated the ability of IL-16 to recruit and influence the development of T regulatory (Treg) cells. We now demonstrate that IL-16 preferentially induces migration in a CD25(+)CTLA-4(+) human T cell subset and that responding cells produce IFNgamma and TGFbeta but not IL-10. These cells are relatively unresponsive to antigenic stimulation and can suppress proliferation and IL-5, but not IFNgamma, production by autologous T cells. We further demonstrate that IL-16-recruited cells are enriched for Forkhead box P3 (Foxp3). In addition, we find that IL-16 stimulation may facilitate de novo induction of Foxp3(+) Treg cells, because the stimulation of FoxP3-negative T cells for 48 h results in the expression of FoxP3 mRNA and protein. These data indicate that at sites of inflammation IL-16 may contribute to selective Treg cell expansion through the preferential induction of a migratory response from existing Treg cells, as well as by the induction of de novo generation of FoxP3(+) cells. These findings offer a potential mechanism for the immunosuppressive effects of IL-16 seen in Th2-mediated inflammation.  相似文献   

20.
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号