首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.  相似文献   

2.
Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis.  相似文献   

3.
Transmissible spongiform encephalopathies (TSEs), including scrapie in sheep (Ovis aries), are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrP(C)) into a a-rich conformer (PrP(Sc)) that accumulates into higher-order structures in the brain and other tissues. Distinct strains of TSEs exist, characterized by different pathologic profiles upon passage into rodents and representing distinct conformations of PrP(Sc). One biochemical method of distinguishing strains is the stability of PrP(Sc) as determined by unfolding in guanidine hydrochloride (GdnHCl), which is tightly and positively correlated with the incubation time of disease upon passage into mice. Here, we utilize a rapid, protease-free version of the stability assay to characterize naturally occurring scrapie samples, including a fast-acting scrapie inoculum for which incubation time is highly dependent on the amino acid at codon 136 of the prion protein. We utilize the stability methodology to identify the presence of two distinct isolates in the inoculum, and compare isolate properties to those of a host-stabilized reference scrapie isolate (NADC 13-7) in order to assess the stability/incubation time correlation in a natural host system. We demonstrate the utility of the stability methodology in characterizing TSE isolates throughout serial passage in livestock, which is applicable to a range of natural host systems, including strains of bovine spongiform encephalopathy and chronic wasting disease.  相似文献   

4.
The production of prion particles in vitro by amplification with or without exogenous seed typically results in infectivity titers less than those associated with PrPSc isolated ex vivo and highlights the potential role of co-factors that can catalyze disease-specific prion protein misfolding in vivo. We used a cell-free conversion assay previously shown to replicate many aspects of transmissible spongiform encephalopathy disease to investigate the cellular location of disease-specific co-factors using fractions derived from gradient centrifugation of a scrapie-susceptible cell line. Fractions from the low density region of the gradient doubled the efficiency of conversion of recombinant PrP. These fractions contain plasma membrane and cytoplasmic proteins, and conversion enhancement can be achieved using PrPSc derived from two different strains of mouse-passaged scrapie as seed. Equivalent fractions from a second scrapie-susceptible cell line also stimulate conversion. We also show that subcellular fractions enhancing disease-specific prion protein conversion prevent in vitro fibrillization of recombinant prion protein, suggesting the existence of separate, competing mechanisms of disease-specific and nonspecific misfolding in vivo.  相似文献   

5.
The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replication. We have introduced into PrP knockout mice transgenes encoding wild-type PrP or PrP lacking 26 or 49 amino-proximal amino acids which are protease susceptible in PrP(Sc). Inoculation with prions led to fatal disease, prion propagation and accumulation of PrP(Sc) in mice expressing both wild-type and truncated PrPs. Within the framework of the 'protein only' hypothesis, this means that the amino-proximal segment of PrP(C) is not required either for its susceptibility to conversion into the pathogenic, infectious form of PrP or for the generation of PrP(Sc).  相似文献   

6.
The pathological conversion of cellular prion protein (PrP(C)) into the scrapie prion protein (PrP(Sc)) isoform appears to have a central role in the pathogenesis of transmissible spongiform encephalopathies. However, the identity of the intracellular compartment where this conversion occurs is unknown. Several lines of evidence indicate that detergent-resistant membrane domains (DRMs or rafts) could be involved in this process. We have characterized the association of PrP(C) to rafts during its biosynthesis. We found that PrP(C) associates with rafts already as an immature precursor in the endoplasmic reticulum. Interestingly, compared with the mature protein, the immature diglycosylated form has a different susceptibility to cholesterol depletion vs. sphingolipid depletion, suggesting that the two forms associate with different lipid domains. We also found that cholesterol depletion, which affects raft-association of the immature protein, slows down protein maturation and leads to protein misfolding. On the contrary, sphingolipid depletion does not have any effect on the kinetics of protein maturation or on the conformation of the protein. These data indicate that the early association of PrP(C) with cholesterol-enriched rafts facilitates its correct folding and reinforce the hypothesis that cholesterol and sphingolipids have different roles in PrP metabolism.  相似文献   

7.
Conversion of cellular prion protein (PrP(C)) into a pathological conformer (PrP(Sc)) is thought to be promoted by PrP(Sc) in a poorly understood process. Here, we report that in wild-type mice, the expression of PrP(C) rendered soluble and dimeric by fusion to immunoglobulin Fcgamma (PrP-Fc(2)) delays PrP(Sc) accumulation, agent replication, and onset of disease following inoculation with infective prions. In infected PrP-expressing brains, PrP-Fc(2) relocates to lipid rafts and associates with PrP(Sc) without acquiring protease resistance, indicating that PrP-Fc(2) resists conversion. Accordingly, mice expressing PrP-Fc(2) but lacking endogenous PrP(C) are resistant to scrapie, do not accumulate PrP-Fc(2)(Sc), and do not transmit disease to others. These results indicate that various PrP isoforms engage in a complex in vivo, whose distortion by PrP-Fc(2) affects prion propagation and scrapie pathogenesis. The unique properties of PrP-Fc(2) suggest that soluble PrP derivatives may represent a new class of prion replication antagonists.  相似文献   

8.
The misfolded infectious isoform of the prion protein (PrP(Sc)) is thought to replicate in an autocatalytic manner by converting the cellular form (PrP(C)) into its pathogenic folding variant. The similarity in the amino acid sequence of PrP(C) and PrP(Sc) influences the conversion efficiency and is considered as the major determinant for the species barrier. We performed in vitro conversion reactions on wild-type and mutated PrP(C) to determine the role of the primary sequence for the high susceptibility of bank voles to scrapie. Different conversion efficiencies obtained with bank vole and mouse PrP(C) in reactions with several prion strains were due to differences at amino acid residues 155 and 170. However, the conversion efficiencies obtained with mouse and vole PrP(C) in reactions with sheep scrapie did not correlate with the susceptibility of the respective species to this prion strain. This discrepancy between in vitro and in vivo data may indicate that at least in the case of scrapie transmission to bank voles additional host factors can strongly modulate the species barrier. Furthermore, in vitro conversion reactions with different prion strains revealed that the degree of alteration of the conversion efficiency induced by amino acid exchanges was varying according to the prion strain. These results support the assumption that the repertoire of conformations adopted by a certain PrP(C) primary sequence is decisive for its convertibility to the strain-specific PrP(Sc) conformation.  相似文献   

9.
PrP(Sc) is believed to serve as a template for the conversion of PrP(C) to the abnormal isoform. This process requires contact between the two proteins and implies that there may be critical contact sites that are important for conversion. We hypothesized that antibodies binding to either PrP(c)or PrP(Sc) would hinder or prevent the formation of the PrP(C)-PrP(Sc) complex and thus slow down or prevent the conversion process. Two systems were used to analyze the effect of different antibodies on PrP(Sc) formation: (i) neuroblastoma cells persistently infected with the 22L mouse-adapted scrapie stain, and (ii) protein misfolding cyclic amplification (PMCA), which uses PrP(Sc) as a template or seed, and a series of incubations and sonications, to convert PrP(C) to PrP(Sc). The two systems yielded similar results, in most cases, and demonstrate that PrP-specific monoclonal antibodies (Mabs) vary in their ability to inhibit the PrP(C)-PrP(Sc) conversion process. Based on the numerous and varied Mabs analyzed, the inhibitory effect does not appear to be epitope specific, related to PrP(C) conformation, or to cell membrane localization, but is influenced by the targeted PrP region (amino vs carboxy).  相似文献   

10.
Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique.  相似文献   

11.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

12.
Transmission studies in transmissible spongiform encephalopathies (TSEs) have become increasingly important due to the possible transmission of bovine spongiform encephalopathy to humans resulting in new variant Creutzfeldt-Jacob disease. The horizontal transmission of scrapie, a TSE of sheep, is poorly understood. Possible sources of horizontal transmission are the submandibular and parotid salivary glands. TSEs like natural sheep scrapie are characterized by the conversion of a normal protease sensitive prion protein, PrP(c), to an abnormal protease resistant prion protein, PrP(Sc). Since the presence of PrP(Sc) is an indicator of disease, the salivary glands of scrapie-infected sheep were examined for the presence of PrP(Sc). Although PrP(c) mRNA was detected in the salivary glands, PrP(Sc) was not found in the salivary glands of scrapie-infected sheep. These data suggest that the salivary glands are unlikely sources of horizontal transmission of natural sheep scrapie.  相似文献   

13.
The role of rafts in the fibrillization and aggregation of prions   总被引:4,自引:0,他引:4  
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrP(C)) to the disease-specific form (PrP(Sc)). The transition from PrP(C) to PrP(Sc) involves a major conformational change, resulting in amorphous aggregates and/or fibrillar amyloid deposits. Here several lines of evidence implicating membranes in the conversion of PrP are reviewed with a particular emphasis on the role of lipid rafts in the conformational transition of prion proteins. New correlations between in vitro biophysical studies and findings from cell biology work on the role of rafts in prion conversion are highlighted and a mechanism for the role of rafts in prion conversion is proposed.  相似文献   

14.
Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system protein misfolding cyclic amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases.  相似文献   

15.
The conversion of cellular prion protein (PrP(C)) to the disease-associated misfolded isoform (PrP(Sc)) is an essential process for prion replication. This structural conversion can be modelled in protein misfolding cyclic amplification (PMCA) reactions in which PrP(Sc) is inoculated into healthy hamster brain homogenate, followed by cycles of incubation and sonication. In serial transmission PMCA experiments it has recently been shown that the protease-resistant PrP obtained in vitro (PrPres) is generated by an autocatalytic mechanism. Here, serial transmission PMCA experiments were compared with serial transmission reactions lacking the sonication steps. We achieved approximately 200,000-fold PrPres amplification by PMCA. In contrast, although initial amplification was comparable to PMCA reactions, PrPres levels quickly dropped below detection limit when samples were not subjected to ultrasound. These results indicate that aggregate breakage is essential for efficient autocatalytic amplification of misfolded prion protein and suggest an important role of aggregate breakage in prion propagation.  相似文献   

16.
Neuroblastoma-derived N2a-PK1 cells, fibroblastic LD9 cells, and CNS-derived CAD5 cells can be infected efficiently and persistently by various prion strains, as measured by the standard scrapie cell assay. Swainsonine, an inhibitor of Golgi α-mannosidase II that causes abnormal N-glycosylation, strongly inhibits infection of PK1 cells by RML, 79A and 22F, less so by 139A, and not at all by 22L prions, and it does not diminish propagation of any of these strains in LD9 or CAD5 cells. Misglycosylated PrP(C) formed in the presence of swainsonine is a good substrate for conversion to PrP(Sc), and misglycosylated PrP(Sc) is fully able to trigger infection and seed the protein misfolding cyclic amplification reaction. Distinct subclones of PK1 cells mediate swainsonine inhibition to very different degrees, implicating misglycosylation of one or more host proteins in the inhibitory process. The use of swainsonine and other glycosylation inhibitors described herein enhances the ability of the cell panel assay to differentiate between prion strains. Moreover, as shown elsewhere, the susceptibility of prions to inhibition by swainsonine in PK1 cells is a mutable trait.  相似文献   

17.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).  相似文献   

18.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

19.
Prion diseases are fatal and transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)) denoted PrP(Sc). To identify intracellular organelles involved in PrP(Sc) formation, we studied the role of the Ras-related GTP-binding proteins Rab4 and Rab6a in intracellular trafficking of the prion protein and production of PrP(Sc). When a dominant-negative Rab4 mutant or a constitutively active GTP-bound Rab6a protein was overexpressed in prion-infected neuroblastoma N2a cells, there was a marked increase of PrP(Sc) formation. By immunofluorescence and cell fractionation studies, we have shown that expression of Rab6a-GTP delocalizes PrP within intracellular compartments, leading to an accumulation in the endoplasmic reticulum. These results suggest that prion protein can be subjected to retrograde transport toward the endoplasmic reticulum and that this compartment may play a significant role in PrP(Sc) conversion.  相似文献   

20.
Scrapie-associated fibrils (SAF) are disease-specific structures found in extracts of the brains of animals affected with scrapie. These structures are pathological aggregates of a normal host protein (PrP). Abnormal post-translational modification of PrP has been suggested to explain its aberrant properties in scrapie-affected brains and although there is a form of PrP in SAF indistinguishable in size from the protein in uninfected brain, lower-molecular-mass variants of PrP are also found in SAF fractions. We report the characterisation of the multiple forms of PrP found in SAF fractions purified from mouse brain affected by the ME7 strain of scrapie. The quantitatively major forms of PrP in SAF prepared without the use of proteinase K have the amino-terminal sequence Lys-Lys-Arg-Pro-Lys-Pro-Gly-Gly-, identical to that predicted for the amino-terminus of normal mouse brain PrP. However N-terminal cleavage of some PrP does occur in vivo within a domain of repetitive sequences at sites similar to but distinct from those cut by proteinase K in vitro. This suggests the conformation of the protein in aggregates in vivo does not differ extensively from that in detergent-treated SAF in vitro. We conclude that the size diversity of PrP in SAF is only partly due to N-terminal proteolysis and is independent of the proteolysis that occurs if proteinase K is used in the purification of SAF. Apart from proteolytic changes in the structure of PrP, we found a novel, as yet unidentified, amino-acid derivative of the arginine residue at position 3 in mouse PrP, which may predispose PrP to form SAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号