首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study reports a microfluidic system using the concept of membrane-movement to design and fabricate micro-pneumatic valves and pumps to form a bio-sensing diagnostic chip. The automatic bio-sampling system includes a micro-diagnostic chip fabricated by using MEMS (micro-electro-mechanical systems) technology and an automatic platform comprising of a control circuit, a compressed air source and several electromagnetic valve switches. The control circuit is used to regulate the electromagnetic valve switches, causing thin PDMS membranes to deflect pneumatically by the compressed air and generate valving and pumping effects. The micro-diagnostic chip allows for the quick detection of diseases. Compared to large-scale systems, the new microfluidic system uses smaller amounts of samples and reagents and performs fast diagnosis in an automated format. Instead of using traditional pneumatic micro-pumps, the current study adopts a new design called "spider-web" micro-pumps to increase the pumping rate, and more importantly, improve the uniformity of flow rates inside multiple micro-channels. Experimental data show that for disease diagnosis, the bio-sensing chips integrated with the micro-pneumatic valves and the peristaltic micro-pumps could successfully perform diagnosis tests. Small amounts of samples and reagents could be injected into the diagnosis chips using the micro-pumps and the micro-pneumatic valves could effectively control the movement of the samples and reagents. In order to demonstrate the functionality of the developed device, detection of hepatitis C virus (HCV) and syphilis has been performed using the bio-sampling chips. Experimental data show that fluorescence signals from the microfluidic system were comparable to the ones using conventional testing methods. The developed chip could be easily extended for multiple disease detection. The automatic bio-sensing chips could provide a useful tool for fast disease detection and be crucial for a micro-total-analysis system.  相似文献   

2.
This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control.  相似文献   

3.
In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies.  相似文献   

4.
Most microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited. In this work, we present a technique for on-chip fluid control that requires no off-chip hardware. We accomplish this by using inert compounds to change the density of one fluid in the chip. If one fluid is made 2% more dense than a second fluid, when the fluids flow together under laminar flow the interface between the fluids quickly reorients to be orthogonal to Earth’s gravitational force. If the channel containing the fluids then splits into two channels, the amount of each fluid flowing into each channel is precisely determined by the angle of the channels relative to gravity. Thus, any fluid can be routed in any direction and mixed in any desired ratio on-chip simply by holding the chip at a certain angle. This approach allows for sophisticated control of on-chip fluids with no off-chip control hardware, significantly reducing the cost of microfluidic instruments in point-of-care or resource-limited settings.  相似文献   

5.
The prevalence of aortic valve stenosis (AS) is increasing in the aging society. More recently, novel treatments and devices for AS, especially transcatheter aortic valve replacement (TAVR) have significantly changed the therapeutic approach to this disease. Research and development related to TAVR require testing these devices in the calcified heart valves that closely mimic a native calcific valve. However, no animal model of AS has yet been available. Alternatively, animals with normal aortic valve that are currently used for TAVR experiments do not closely replicate the aortic valve pathology required for proper testing of these devices. To solve this limitation, for the first time, we developed a novel polymeric valve whose leaflets possess calcium hydroxyapatite inclusions immersed in them. This study reports the characteristics and feasibility of these valves. Two types of the polymeric valve, i.e., moderate and severe calcified AS models were developed and tested by deploying a transcatheter valve in those and measuring the related hemodynamics. The valves were tested in a heart flow simulator, and were studied using echocardiography. Our results showed high echogenicity of the polymeric valve, that was correlated to the severity of the calcification. Aortic valve area of the polymeric valves was measured, and the severity of stenosis was defined according to the clinical guidelines. Accordingly, we showed that these novel polymeric valves closely mimic AS, and can be a desired cost-saving solution for testing the performance of the transcatheter aortic valve systems in vitro.  相似文献   

6.
In this study, the closing dynamics of two impinging rods were experimentally analyzed to simulate the cavitation phenomena associated with mechanical heart valve closure. The purpose of this study was to investigate the cavitation phenomena with respect to squeeze flow between two impinging surfaces and the parameter that influences cavitation inception. High-speed flow imaging was employed to visualize and identify regions of cavitation. The images obtained favored squeeze flow as an important mechanism in cavitation inception. A correlation study of the effects of impact velocities, contact areas and squeeze flow velocity on cavitation inception showed that increasing impact velocities results in an increase in the risk of cavitation. It was also shown that for similar impact velocities, regions near the point of impact were found to cavitate later for those with smaller contact areas. It was found that the decrease in contact areas and squeeze flow velocities would delay the onset and reduce the intensity of cavitation. It is also interesting to note that the squeeze flow velocity alone does not provide an indication if cavitation inception will occur. This is corroborated by the wide range of published critical squeeze flow velocity required for cavitation inception. It should be noted that the temporal acceleration of fluid, often neglected in the literature, can also play an important role on cavitation inception for unsteady flow phenomenon. This is especially true in mechanical heart valves, where for the same leaflet closing velocity, valves with a seat stop were observed to cavitate earlier. Based on these results, important inferences may be made to the design of mechanical heart valves with regards to cavitation inception.  相似文献   

7.
An in vitro comparative study of St. Jude (SJ) and Edwards-Duromedics (DM) Bileaflet valves was performed under steady and physiological pulsatile flow conditions in an axisymmetric chamber using Laser Doppler Anemometry (LDA). LDA measurements were conducted in two different orientations; in the first orientation, the LDA traverse was perpendicular and, in the second orientation, parallel to the tilt axis of the leaflets. The axial velocities were measured in both orientations at two different locations distal to the valves. The velocity profiles at peak systole show the presence of stronger vortex in the sinus region for flow past SJ valve in the first orientation compared to the DM valve. Velocity profile distal to the SJ valve in second orientation was relatively flat where as for the DM valve, a jet-like flow was present. The differences found in the velocity profiles between the two valves can be attributed to the differences in geometry with thicker leaflets, smaller angle of leaflets opening and the presence of the leaflet curvature for the DM valve. The results obtained in this study do not show any fluid dynamic advantages due to the curved leaflet geometry of the DM valve.  相似文献   

8.
In this paper, a long-term in vitro dynamic calcification of three porcine aortic heart valves was investigated using a combined approach that involved accelerated wear testing of the valves in the rapid calcification solution, hydrodynamic assessment of the progressive change of effective orifice area (EOA) along with the transaortic pressure gradient, and quantitative visualization of the flow. The motivation for this study was developing a standardized, economical, and feasible in vitro testing methodology for bioprosthetic heart valve calcification, which would address both the hydrodynamic performance of the valves as well as the subsequent changes in the flow field. The results revealed the failure of the test valves at 40 million cycles mark, associated with the critical decrease in the EOA, followed by the increase in the maximum value of viscous shear stress of up to 52%, compared to the values measured at the beginning of the study. The decrease in the EOA was subsequently followed by the rapid increase in the maximum streamwise velocity of the central orifice jet up to the value of about 2.8 m/s, compared to the initial value of 2 m/s, and to the value of 2.2 m/s in the case of a control valve along with progressive narrowing of the velocity profile for two test valves. The significance of the current work is in demonstrating a correlation between calcification of the aortic valve and spatial as well as the temporal development of abnormal flow features.  相似文献   

9.
Hemolysis and thrombosis are among the most detrimental effects associated with mechanical heart valves. The strength and structure of the flows generated by the closure of mechanical heart valves can be correlated with the extent of blood damage. In this in vitro study, a tilting disk mechanical heart valve has been modified to measure the flow created within the valve housing during the closing phase. This is the first study to focus on the region just upstream of the mitral valve occluder during this part of the cardiac cycle, where cavitation is known to occur and blood damage is most severe. Closure of the tilting disk valve was studied in a "single shot" chamber driven by a pneumatic pump. Laser Doppler velocimetry was used to measure all three velocity components over a 30 ms period encompassing the initial valve impact and rebound. An acrylic window placed in the housing enabled us to make flow measurements as close as 200 microm away from the closed occluder. Velocity profiles reveal the development of an atrial vortex on the major orifice side of the valve shed off the tip of the leaflet. The vortex strength makes this region susceptible to cavitation. Mean and maximum axial velocities as high as 7 ms and 20 ms were recorded, respectively. At closure, peak wall shear rates of 80,000 s(-1) were calculated close to the valve tip. The region of the flow examined here has been identified as a likely location of hemolysis and thrombosis in tilting disk valves. The results of this first comprehensive study measuring the flow within the housing of a tilting disk valve may be helpful in minimizing the extent of blood damage through the combined efforts of experimental and computational fluid dynamics to improve mechanical heart valve designs.  相似文献   

10.
The hemodynamic and the thrombogenic performance of two commercially available bileaflet mechanical heart valves (MHVs)--the ATS Open Pivot Valve (ATS) and the St. Jude Regent Valve (SJM), was compared using a state of the art computational fluid dynamics-fluid structure interaction (CFD-FSI) methodology. A transient simulation of the ATS and SJM valves was conducted in a three-dimensional model geometry of a straight conduit with sudden expansion distal the valves, including the valve housing and detailed hinge geometry. An aortic flow waveform (60 beats/min, cardiac output 4 l/min) was applied at the inlet. The FSI formulation utilized a fully implicit coupling procedure using a separate solver for the fluid problem (FLUENT) and for the structural problem. Valve leaflet excursion and pressure differences were calculated, as well as shear stress on the leaflets and accumulated shear stress on particles released during both forward and backward flow phases through the open and closed valve, respectively. In contrast to the SJM, the ATS valve opened to less than maximal opening angle. Nevertheless, maximal and mean pressure gradients and velocity patterns through the valve orifices were comparable. Platelet stress accumulation during forward flow indicated that no platelets experienced a stress accumulation higher than 35 dyne x s/cm2, the threshold for platelet activation (Hellums criterion). However, during the regurgitation flow phase, 0.81% of the platelets in the SJM valve experienced a stress accumulation higher than 35 dyne x s/cm2, compared with 0.63% for the ATS valve. The numerical results indicate that the designs of the ATS and SJM valves, which differ mostly in their hinge mechanism, lead to different potential for platelet activation, especially during the regurgitation phase. This numerical methodology can be used to assess the effects of design parameters on the flow induced thrombogenic potential of blood recirculating devices.  相似文献   

11.
A pair of finite element models has been employed to study the interaction of blood flow with the operation of the aortic valve. A three-dimensional model of the left ventricle with applied wall displacements has been used to generate data for the spatially and time-varying blood velocity profile across the aortic aperture. These data have been used as the inlet loading conditions in a three-dimensional model of the aortic valve and its surrounding structures. Both models involve fluid-structure interaction and simulate the cardiac cycle as a dynamic event. Confidence in the models was obtained by comparison with data obtained in a pulse duplicator. The results show a circulatory flow being generated in the ventricle which produces a substantially axial flow through the aortic aperture. The aortic valve behaves in an essentially symmetric way under the action of this flow, so that the pressure difference across the leaflets is approximately uniform. This work supports the use of spatially uniform but temporally variable pressure distributions across the leaflets in dry or structural models of aortic valves. The study is a major advance through its use of truly three-dimensional geometry, spatially non-uniform loading conditions for the valve leaflets and the successful modelling of progressive contact of the leaflets in a fluid environment.  相似文献   

12.
The visualization and quantitative analysis of flow offers a possibility for the hydrodynamic characterization of artificial heart valves. Different types of valves can be compared if velocity profile and the turbulent shear stress caused by the prosthesis are known. The tracer technique was selected, since it permits visualization also of turbulent flow through the valve. With the aid of a simple optical device the three-dimensional flow pattern behind the valve is determinable. The main features of the method are: The regions of interest can easily be identified. Velocity profiles can be determined and shear stress and turbulence intensities estimated. The experimental setup is simple, calibration is not necessary, and it can be used for turbulent flows. The method can be used only with transparent fluids and vessels; measurements in blood are not possible. Because of the large number of measuring points required the method is very time-consuming. The use of an automatic picture analyzing system would make it possible to increase the number of pictures processed, and thus increase resolution. The velocity profile of a three-finger-valve, the TAD 29, was established at a distance of 20 mm from the ring, and compared with known profiles from the literature. The valve has an opening angle of 70 degrees. All typical regions for the flow of an artificial heart valve, such as jet, stagnation gone, backflow and turbulence were demonstrated.  相似文献   

13.
Swimming bacteria sense and respond to chemical signals in their environment. Chemotaxis is the directed migration of a bacterial population toward increasing concentrations of a chemical that they perceive to be beneficial to their survival. Bacteria that are indigenous to groundwater environments exhibit chemotaxis toward chemical contaminants such as hydrocarbons, which they are also able to degrade. This phenomenon may facilitate bioremediation processes by bringing bacteria into closer proximity to these contaminants. A microfluidic device was assembled to study chemotaxis transverse to advective flow. Using a T-shaped channel design (T-sensor), two fluid streams were brought into contact by impinging flow. They then flowed adjacent to each other along a transparent channel. An advantage to this design is that it allows real-time visualization of bacterial distributions within the channel. Under laminar flow conditions a chemotactic driving force was created perpendicular to the direction of flow by diffusion of the chemical attractant from one input stream to the other. A comparison of the chemotactic band behavior in the absence and presence of flow showed that fluid velocity did not significantly impede chemotactic migration in the transverse direction.  相似文献   

14.
Venous valves play a crucial role in blood circulation, promoting the one-way movement of blood from superficial and deep veins towards the heart. By preventing retrograde flow, venous valves spare capillaries and venules from being subjected to damaging elevations in pressure, especially during skeletal muscle contraction. Pathologically, valvular incompetence or absence of valves are common features of venous disorders such as chronic venous insufficiency and varicose veins. The underlying causes of these conditions are not well understood, but congenital venous valve aplasia or agenesis may play a role in some cases. Despite progress in the study of cardiac and lymphatic valve morphogenesis, the molecular mechanisms controlling the development and maintenance of venous valves remain poorly understood. Here, we show that in valved veins of the mouse, three gap junction proteins (Connexins, Cxs), Cx37, Cx43, and Cx47, are expressed exclusively in the valves in a highly polarized fashion, with Cx43 on the upstream side of the valve leaflet and Cx37 on the downstream side. Surprisingly, Cx43 expression is strongly induced in the non-valve venous endothelium in superficial veins following wounding of the overlying skin. Moreover, we show that in Cx37-deficient mice, venous valves are entirely absent. Thus, Cx37, a protein involved in cell–cell communication, is one of only a few proteins identified so far as critical for the development or maintenance of venous valves. Because Cxs are necessary for the development of valves in lymphatic vessels as well, our results support the notion of common molecular pathways controlling valve development in veins and lymphatic vessels.  相似文献   

15.
The present study simulates numerically the flow across two-dimensional tilting disk models of mechanical heart valves. The time-dependent Navier-Stokes equations are solved to assess the importance of unsteady effects in the fully open position of the valve. Flow cases with steady or physiological inflow conditions and with fixed or moving valves are solved. The simulations lead into mixed conclusions. It is obvious that steady inflow cases that account for vortex shedding only cannot model realistic physiological cases. In cases with imposed physiological inflow, the details of the flow field for fixed and moving valves might differ in the fully open position as well, although the gross features are quite similar. The fixed valve case consistently results in safe estimations of several critical quantities such as the axial force, the maximal shear stress on the valve, or the transvalvular pressure drop. Thus, fixed valve simulations can provide useful information for the design of prosthetic heart valves, as long as the properties in the fully open position only are sought.  相似文献   

16.
Experimental results are presented on physiological pulsatile flow past caged ball and tilting disc aortic valve prostheses mounted in an axisymmetric chamber incorporated in a mock circulatory system. The measurements of velocity profiles and turbulent normal stresses during several times in a cardiac cycle were obtained using laser-Doppler anemometry. Our results show that with increased angle of opening for the tilting disc valves, a large but locally confined vortex is observed along the wall in the minor flow region throughout most of the cardiac cycle. The turbulent normal stresses measured downstream to the tilting disc in the minor flow region parallel to the tilt axis were found to be larger than those measured downstream to the caged ball valves. Comparison of measurements with steady flow at flow rates comparable to peak pulsatile flow rate show that the turbulent normal stresses are larger by a factor of two in pulsatile flow with a frequency of 1.2 Hz.  相似文献   

17.
Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.  相似文献   

18.
Around 250,000 heart valve replacements are performed every year around the world. Due their higher durability, approximately 2/3 of these replacements use mechanical prosthetic heart valves (mainly bileaflet valves). Although very efficient, these valves can be subject to valve leaflet malfunctions. These malfunctions are usually the consequence of pannus ingrowth and/or thrombus formation and represent serious and potentially fatal complications. Hence, it is important to investigate the flow field downstream of a dysfunctional mechanical heart valve to better understand its impact on blood components (red blood cells, platelets and coagulation factors) and to improve the current diagnosis techniques. Therefore, the objective of this study will be to numerically and experimentally investigate the pulsatile turbulent flow downstream of a dysfunctional bileaflet mechanical heart valve in terms of velocity field, vortex formation and potential negative effect on blood components. The results show that the flow downstream of a dysfunctional valve was characterized by abnormally elevated velocities and shear stresses as well as large scale vortices. These characteristics can predispose to blood components damage. Furthermore, valve malfunction led to an underestimation of maximal transvalvular pressure gradient, using Doppler echocardiography, when compared to numerical results. This could be explained by the shifting of the maximal velocity towards the normally functioning leaflet. As a consequence, clinicians should try, when possible, to check the maximal velocity position not only at the central orifice but also through the lateral orifices. Finding the maximal velocity in the lateral orifice could be an indication of valve dysfunction.  相似文献   

19.
With the development of the in vitro testing of heart valves, the standardization of the test methods becomes increasingly important and they should also be improved continuously. This paper discusses the problems of waveform comparison and average value dispositions. In the pulsatile model driven by pneumatics, the pressures before and after the valve, and the flow through it, are measured as three one-dimensional variates. The mean values are calculated according to the FDA and the ISO. A comparison and analysis of experimental waveforms indicate that, for basically the same ranges of pressures and flow rate, the flow curves of different types of valve are clearly different. The mean values and the waveforms in the time domain should be taken into consideration synthetically so that the pusatile characteristics of the valve can be more completely reflected. Using numerical filtering methods to treat the waveforms allows for better comparisons between the measured results taken from the different devices. By means of the constellation graphical method for treating mean values as multivariates, it is feasible to classify the valves and to judge their qualities under conditions of pulsatile flow.  相似文献   

20.
The need for better and longer lasting trileaflet valves has led to the design and development of the Abiomed polymeric trileaflet valve prosthesis. In-vitro fluid dynamic studies on sizes 25 and 21 mm valves in the aortic position indicate an overall improvement in performance compared to the Carpentier-Edwards and Ionescu-Shiley tissue valves in current clinical use. The pressure drop studies yielded effective orifice areas of 1.99 and 1.54 cm2, and performance indices of 0.41 and 0.45 for the Nos. 25 and 21 valves, respectively. Leaflet photography studies indicated that the two valve sizes had maximum opening areas of 225 and 145 mm2, respectively, at a normal resting cardiac output. Steady and pulsatile flow velocity measurements with a laser-Doppler anemometer (LDA) system indicate that the flow field downstream of the Abiomed valve is jetlike and turbulent. Maximum mean square axial velocity fluctuations of 55 and 83 cm/s, and turbulent shear stresses of 220 and 450 N/m2 were measured in the immediate vicinity of the nos. 25 and 21 valves, respectively. The Abiomed valves studied had been originally configured for use in valved conduits, and it is therefore our opinion that further improvements can be made to the valve and stent design, which would enhance its fluid dynamic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号