首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Novel odorant-binding proteins expressed in the taste tissue of the fly   总被引:1,自引:0,他引:1  
A taste tissue cDNA library of the fleshfly Boettcherisca peregrina was screened with a subtracted cDNA probe enriched with taste-receptor-tissue-specific cDNA. Seven genes were identified with sequence similarity to insect odorant-binding protein (OBP) genes. The predicted amino acid sequences of the genes contain the putative signal peptide sequence at the N-terminal and most of them conserve the six cysteines common to known insect OBPs. These genes show a high degree of sequence divergence with approximately 20% amino acid identity. The most striking feature was that all seven of these genes are expressed mainly in the taste tissues, such as the labellum and tarsus, unlike the known insect OBP genes expressed in olfactory tissue. The predicted amino acid sequences had the highest degree of sequence similarity to the Drosophila melanogaster OBPs named pheromone binding protein-related proteins (PBPRPs). These gene products are here referred to as gustatory PBP-related proteins (GPBPRPs) 1-7. Homologous GPBPRP genes were found also in D. melanogaster by database search and are shown to be expressed in Drosophila taste tissues.  相似文献   

3.
4.
Kerr M  Davies SA  Dow JA 《Current biology : CB》2004,14(16):1468-1474
Every living cell must detect, and respond appropriately to, external signals. The functions of intracellular second messengers, such as guanosine 3'5'-cyclic monophosphate (cGMP), adenosine 3'5'-cyclic monophosphate (cAMP), and intracellular calcium, are thus intensively studied. However, artifact-free manipulation of these messengers is problematic, and simple pharmacology may not allow selective intervention in distinct cell types in a real, complex tissue. We have devised a method by which second messenger levels can be manipulated in cells of choice using the GAL4/UAS system. By placing different receptors (rat atrial natriuretic peptide [ANP] receptor and Drosophila serotonin receptors [5HT(Dro7) and 5HT(Dro1A)]) under UAS control, they can be targeted to arbitrary defined populations of cells in any tissue of the fly, and second messenger levels can be manipulated simply by adding the natural ligand. The potential of the system is illustrated in the Drosophila renal (Malpighian) tubule, where each receptor was shown to stimulate fluid secretion, to act through its cognate second messenger, and to be blocked by appropriate pharmacological antagonists. The results uncovered a new role for cGMP signaling in tubule and also demonstrate the utility of the tubule as a possible in vivo test bed for novel receptors, ligands, or agonists/antagonists.  相似文献   

5.
6.
7.
基因组织特异性相关研究进展   总被引:1,自引:0,他引:1  
研究基因的组织特异性是了解生命活动进程和组织功能的重要一步.尽管对于看家基因和组织特异基因的研究由来已久,但是对于它们仍缺少统一的定义方式和检测方法.在定义方式上,可以从基因的组织表达数和在各组织间的表达变化情况来分别定义看家基因和组织特异基因.通常将在大多数正常组织中有表达,且表达水平较稳定的基因称为看家基因,而将在一个或少数组织中优势表达的基因定义为组织特异基因或组织选择基因.在检测方法上,高通量实验技术,包括基因芯片、RNA-seq和质谱技术等已成为检测基因组织特异性的主要方法.通过比较多个典型研究的实验结果,发现不同检测方法的覆盖度和灵敏度存在很大差异,其中RNA-seq技术最为灵敏,获得的看家基因数目最多,质谱技术检测出来的看家基因和组织特异基因数目较少,而基因芯片方法给出的多个检测结果间差别较大.尽管不同的定义方式和检测方法所导致的看家基因(或组织特异基因)的集合不完全一致,但不同的看家基因数据集(或组织特异基因)却展现出非常一致的功能和特性.看家基因通常实现所有组织和细胞都必须的基本功能,而看家基因与其他组织表达基因间的相互作用以及组织特异基因间的相互作用则实现了组织的特有功能.同时,基因的组织特异性与疾病之间具有密切联系,相比其他基因,看家基因更有可能成为癌基因,而组织特异基因则更有希望发展成为药物靶标.  相似文献   

8.
9.
基因表达研究中内参基因的选择与应用   总被引:4,自引:0,他引:4  
管家基因是一类无组织特异性的,在物种的所有组织细胞中都表达的基因,被广泛用作内参基因来检测目标基因在不同的组织器官、一定的发育阶段或胁迫的环境条件下的表达规律变化。这些管家基因并不是在所有生理条件下都能作为理想内参基因稳定表达。在基因表达转录分析中,大多数普遍使用的内参基因已不能满足准确定量的要求。基于统计学分析软件,如geNorm、BestKeeper和NormFinder三种分析软件,可以筛选出稳定性较好的内参基因。本文综述了内参基因的选择条件、方法及应用。  相似文献   

10.
Genetic variation is known to influence the amount of mRNA produced by a gene. Because molecular machines control mRNA levels of multiple genes, we expect genetic variation in components of these machines would influence multiple genes in a similar fashion. We show that this assumption is correct by using correlation of mRNA levels measured from multiple tissues in mouse strain panels to detect shared genetic influences. These correlating groups of genes (CGGs) have collective properties that on average account for 52–79% of the variability of their constituent genes and can contain genes that encode functionally related proteins. We show that the genetic influences are essentially tissue-specific and, consequently, the same genetic variations in one animal may upregulate a CGG in one tissue but downregulate the CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. Thus, this class of genetic variation can result in complex inter- and intraindividual differences. This will create substantial challenges in humans, where multiple tissues are not readily available. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. M. J. Cowley, C. J. Cotsapas, and R. B. H. Williams contributed equally to this work.  相似文献   

11.
12.
The Drosophila neuralized gene shows genetic interactions with Notch, Enhancer of split, and other neurogenic genes and is thought to be involved in cell fate specification in the central nervous system and the mesoderm. In addition, a human homologue of the Drosophila neuralized gene has been described as a potential tumor suppressor gene in malignant astrocytomas. We have isolated a murine homologue of the Drosophila and human Neuralized genes and, in an effort to understand its physiological function, derived mice with a targeted deletion of this gene. Surprisingly, mice homozygous for the introduced mutation do not show aberrant cell fate specifications in the central nervous system or in the developing mesoderm. This is in contrast to mice with targeted deletions in other vertebrate homologues of neurogenic genes such as Notch, Delta, and Cbf-1. Male Neuralized null mice, however, are sterile due to a defect in axoneme organization in the spermatozoa that leads to highly compromised tail movement and sperm immotility. In addition, female Neuralized null animals are defective in the final stages of mammary gland maturation during pregnancy.  相似文献   

13.
14.
15.
16.
p24 proteins comprise a family of type-I transmembrane proteins of ~24kD that are present in yeast and plants as well as metazoans ranging from Drosophila to humans. These proteins are most commonly localized to the endoplasmic reticulum (ER)-Golgi interface and are incorporated in anterograde and retrograde transport vesicles. Little is known about how disruption of p24 signaling affects individual tissue function or whole animals. Drosophila melanogaster express nine p24 genes, grouped into four subfamilies. Based upon our mRNA and protein expression data, Drosophila p24 family members are expressed in a variety of tissues. To identify functions for particular Drosophila p24 proteins, we used RNA interference (RNAi) to reduce p24 expression. Ubiquitous reduction of most p24 genes resulted in complete or partial lethality during development. We found that reducing p24 levels in adults caused defects in female fecundity (egg laying) and also reduced male fertility. We attributed reduced female fecundity to decreased neural p24 expression. These results provide the first genetic analysis of all p24 family members in a multicellular animal and indicate vital roles for Drosophila p24s in development and reproduction, implicating neural expression of p24s in the regulation of female behavior.  相似文献   

17.

Background  

It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types.  相似文献   

18.
19.
The templates of innate immunity have ancient origins. Thus, such model animals as the fruit fly, Drosophila melanogaster, can be used to identify gene products that also play a key role in the innate immunity in mammals. We have used oligonucleotide microarrays to identify genes that are responsive to gram-negative bacteria in Drosophila macrophage-like S2 cells. In total, 53 genes were induced by greater than threefold in response to Escherichia coli. The induction of all these genes was peptidoglycan recognition protein LC (PGRP-LC) dependent. Twenty-two genes including 10 of the most strongly induced genes are also known to be up-regulated by septic injury in vivo. Importantly, we identified 31 genes that are not known to respond to bacterial challenge. We carried out targeted dsRNA treatments to assess the functional importance of these gene products for microbial recognition, phagocytosis and antimicrobial peptide release in Drosophila S2 cells in vitro. RNAi targeting three of these genes, CG7097, CG15678 and beta-Tubulin 60D, caused altered antimicrobial peptide release in vitro. Our results indicate that the JNK pathway is essential for normal antimicrobial peptide release in Drosophila in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号