首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aim of elucidating the biological function of hypothetical proteins unique amongst the Actynomyces sub-group of bacteria, we have solved the crystal structure of the conserved hypothetical protein Rv1155 from Mycobacterium tuberculosis at 1.8 A resolution. Rv1155 is a homodimer both in the crystal structure and in solution and folds into two separate domains consisting of a six-stranded anti-parallel beta-barrel fold flanked by two alpha-helices and a helix-turn-helix domain. Both domains contribute to the formation of two deep clefts at the dimer interface. The overall fold of Rv1155 strikingly resembles that of flavin mononucleotide-binding protein and pyridoxamine 5'-phosphate oxydase, but the architecture of the putative binding pocket is markedly different, consistent with the lack of color of Rv1155 and its inability to bind FMN. Rv1155 thus appears to belong to a group of proteins with stringent conservation of the binding cleft, having evolved towards a new binding function.  相似文献   

2.
Many outer membrane proteins (OMPs) in Gram-negative bacteria possess known beta-barrel three-dimensional (3D) structures. These proteins, including channel-forming transmembrane porins, are diverse in sequence but exhibit common structural features. We here report computational analyses of six outer membrane proteins of known 3D structures with respect to (1) secondary structure, (2) hydropathy, and (3) amphipathicity. Using these characteristics, as well as the presence of an N-terminal targeting sequence, a program was developed allowing prediction of integral membrane beta-barrel proteins encoded within any completely sequenced prokaryotic genome. This program, termed the beta-barrel finder (BBF) program, was used to analyze the proteins encoded within the Escherichia coli genome. Out of 4290 sequences examined, 118 (2.8%) were retrieved. Of these, almost all known outer membrane proteins with established beta-barrel structures as well as many probable outer membrane proteins were identified. This program should be useful for predicting the occurrence of outer membrane proteins in bacteria with completely sequenced genomes.  相似文献   

3.
Since its discovery in the late 1980's, the family of secreted proteins termed the autotransporters has been expanding continuously to become the largest group of secreted proteins in Gram-negative bacteria. The type V secretion pathway, which includes the autotransporters (type Va) together with the two-partner secretion system (type Vb) and the Oca family (type Vc), can be defined by secreted proteins that are (i) translocated across the outer membrane via a transmembrane pore formed by a beta-barrel and (ii) contain all the information required for translocation through the cell envelope. In the light of new discoveries and controversies in this research field, the secretion process of autotransporters, or the type Va secretion system, will be discussed here and placed in the context of the more general field of bacterial protein translocation.  相似文献   

4.
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The cellular location and functional diversity of beta-barrel outer membrane proteins (omps) makes them an important protein class. At the present time, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane proteins. A novel method using pairwise interstrand residue statistical potentials derived from globular (nonouter membrane) proteins is introduced to predict the supersecondary structure of transmembrane beta-barrel proteins. The algorithm transFold employs a generalized hidden Markov model (i.e., multitape S-attribute grammar) to describe potential beta-barrel supersecondary structures and then computes by dynamic programming the minimum free energy beta-barrel structure. Hence, the approach can be viewed as a "wrapping" component that may capture folding processes with an initiation stage followed by progressive interaction of the sequence with the already-formed motifs. This approach differs significantly from others, which use traditional machine learning to solve this problem, because it does not require a training phase on known TMB structures and is the first to explicitly capture and predict long-range interactions. TransFold outperforms previous programs for predicting TMBs on smaller (相似文献   

5.
Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 A resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane beta-barrel domain in a fashion that may mimic protein-lipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export.  相似文献   

6.
DUF538 protein super family includes a number of plant proteins that their role is not yet clear. These proteins have been frequently reported to be expressed in plants under various stressful stimuli such as bacteria and elicitors. In order to further understand about this protein family we utilized bioinformatics tools to analyze its structure in details. As a result, plants DUF538 was predicted to be the partial structural homologue of BPI (bactericidal/permeability increasing) proteins in mammalian innate immune system that provides the first line of defense against different pathogens including bacteria, fungi, viruses and parasites. Moreover, on the base of the experimental data, it was identified that exogenously applied purified fused product of Celosia DUF538 affects the bacterial growth more possibly similar to BPI through the binding to the bacterial membranes. In conclusion, as the first ever time report, we nominated DUF538 protein family as the potential structural and functional homologue of BPI protein in plants, providing a basis to study the novel functions of this protein family in the biological systems in the future.  相似文献   

7.
Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif.  相似文献   

8.
Proteins containing a domain of unknown function 59 (DUF59) appear to have a variety of physiological functions, ranging from iron-sulfur cluster assembly to DNA repair. DUF59 proteins have been found in bacteria, archaea and eukaryotes, however Fam96a and Fam96b are the only mammalian proteins predicted to contain a DUF59 domain. Fam96a is an 18 kDa protein comprised primarily of a DUF59 domain (residues 31–157) and an N-terminal signal peptide (residues 1–27). Interestingly, the DUF59 domain of Fam96a exists as monomeric and dimeric forms in solution, and X-ray crystallography studies of both forms unexpectedly revealed two different domain-swapped dimer structures. Here we report the backbone resonance assignments and secondary structure of the monomeric form of the 127 residue DUF59 domain of human Fam96a. This study provides the basis for further understanding the structural variability exhibited by Fam96a and the mechanism for domain swapping.  相似文献   

9.
The genomes of many organisms have been sequenced in the last 5 years. Typically about 30% of predicted genes from a newly sequenced genome cannot be given functional assignments using sequence comparison methods. In these situations three-dimensional structural predictions combined with a suite of computational tools can suggest possible functions for these hypothetical proteins. Suggesting functions may allow better interpretation of experimental data (e.g., microarray data and mass spectroscopy data) and help experimentalists design new experiments. In this paper, we focus on three hypothetical proteins of Shewanella oneidensis MR-1 that are potentially related to iron transport/metabolism based on microarray experiments. The threading program PROSPECT was used for protein structural predictions and functional annotation, in conjunction with literature search and other computational tools. Computational tools were used to perform transmembrane domain predictions, coiled coil predictions, signal peptide predictions, sub-cellular localization predictions, motif prediction, and operon structure evaluations. Combined computational results from all tools were used to predict roles for the hypothetical proteins. This method, which uses a suite of computational tools that are freely available to academic users, can be used to annotate hypothetical proteins in general.  相似文献   

10.
Objective DUF538(domain of unknown function 538) domain containing proteins are known as putative hypothetical proteins in plants. Until yet, there is no much information regarding their structure and function. Methods In the present research work, the homologous structures and binding potentials were identified between plant/mammalian lipocalins and plant DUF538 protein by using bioinformatics and experimental tools including molecular dynamics simulation, molecular docking and recombinant tech...  相似文献   

11.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

12.
Capitani G  Eidam O  Grütter MG 《Proteins》2006,65(4):816-823
Many pathogenic bacteria possess adhesive surface organelles (called pili), anchored to their outer membrane, which mediate the first step of infection by binding to host tissue. Pilus biogenesis occurs via the "chaperone-usher" pathway: the usher, a large outer membrane protein, binds complexes of a periplasmic chaperone with pilus subunits, unloads the subunits from the chaperone, and assembles them into the pilus, which is extruded into the extracellular space. Ushers comprise an N-terminal periplasmic domain, a large transmembrane beta-barrel central domain, and a C-terminal periplasmic domain. Since structural data are available only for the N-terminal domain, we performed an in-depth bioinformatic analysis of bacterial ushers. Our analysis led us to the conclusion that the transmembrane beta-barrel region of ushers contains a so far unrecognized soluble domain, the "middle domain", which possesses a beta-sandwich fold. Two other bacterial beta-sandwich domains, the TT0351 protein from Thermus thermophilus and the carbohydrate binding module CBM36 from Paenibacillus polymyxa, are possible distant relatives of the usher "middle domain". Several mutations reported to abolish in vivo pilus formation cluster in this region, underlining its functional importance.  相似文献   

13.
Protein domain family PF11267 (DUF3067) is a family of proteins of unknown function found in both bacteria and eukaryotes. Here we present the solution NMR structure of the 102-residue Alr2454 protein from Nostoc sp. PCC 7120, which constitutes the first structural representative from this conserved protein domain family. The structure of Nostoc sp. Alr2454 adopts a novel protein fold.  相似文献   

14.
In addition to one hypothetical viral sequence from Bacteriophage KVP40, the PfamA family of unknown function DUF458 (Pfam Accession No. PF04308) encompasses several uncharacterized bacterial proteins including Bacillus subtilis YkuK protein. Using Meta-BASIC, a highly sensitive method for detection of distant similarity between proteins, we assign DUF458 family members to the ribonuclease H-like (RNase H-like) superfamily. DUF458 sequences maintain all core secondary structure elements of RNase H-like fold and share several conserved, presumably active site residues with RNase HI, including an invariant DDE motif. In addition to providing a model structure for a previously uncharacterized protein family, this finding suggests that DUF458 proteins function as nucleases. The unusual phyletic pattern, together with a presence of DUF458 in several thermophilic organisms, may suggest a potential role of these proteins in DNA repair in stressful conditions such as an extreme heat or other stress that causes spore formation.  相似文献   

15.
VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a three-gene operon containing the MbaA gene that encodes for a GGDEF and EAL domain-containing protein which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0 A and refined to Rwork = 22.8% and Rfree = 26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C222(1) space group with dimensions of a = 66.61 A, b = 88.118 A, and c = 118.35 A with a homodimer in the asymmetric unit. VC0702, which forms a mixed alpha + beta three-layered alphabetaalpha sandwich, belongs to the Pfam DUF84 and COG1986 families of proteins. Sequence conservation within the DUF84 and COG1986 families was used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeschii, which has been identified as a novel NTPase that binds NTP in a deep cleft similarly located to the conserved patch of surface residues that define an analogous cleft in VC0702. Collectively, the data suggest that VC0702 may have a biochemical function that involves NTP binding and phosphatase activity of some kind, and is likely involved in regulation of the signaling pathway that controls biofilm formation and maintenance in Vibrio cholerae.  相似文献   

16.
The progress in genome sequencing has led to an increasing submission of uncharacterized hypothetical genes with the domain of unknown function, DUF985, in GenBank, and none of these genes is related to a known protein. We therefore underwent an experimental study to identify the function of a DUF985 domain-containing hypothetical gene BbDUF985 (GenBank Accession No. AY273818) isolated from amphioxus Branchiostoma belcheri (B. belcheri). BbDUF985 was successfully expressed in both prokaryotic and eukaryotic systems, and its recombinant proteins expressed in both systems definitely exhibited an activity of phosphoglucose isomerase (PGI). Both tissue-section in situ hybridization and immunohistochemistry demonstrated that BbDUF985 was expressed in a tissue-specific manner, with most abundant levels in the hepatic caecum and ovary. In CHO cells transfected with the expression plasmid pEGFP-N1/BbDUF985, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that BbDUF985 is a cytosolic protein. In contrast, Western blotting indicated that BbDUF985 was also present in amphioxus humoral fluids, suggesting that it exists as a secreted protein as well. Our study provided a framework for further understanding the biochemical properties and physiological function of DUF985-containing hypothetical proteins in other species.  相似文献   

17.
The folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria into lipid bilayers has been studied using OmpA of E. coli and FomA of F. nucleatum as examples. Both, OmpA and FomA are soluble in unfolded form in urea and insert and fold into phospholipid bilayers upon strong dilution of the denaturant urea. OmpA is a structural protein and forms a small ion channel, composed of an 8-stranded transmembrane beta-barrel domain. FomA is a voltage-dependent porin, predicted to form a 14 stranded beta-barrel. Both OMPs fold into a range of model membranes of very different phospholipid compositions. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers that demonstrated a highly synchronized mechanism of secondary and tertiary structure formation of beta-barrel membrane proteins. A study on FomA folding into lipid bilayers indicated the presence of parallel folding pathways for OMPs with larger transmembrane beta-barrels.  相似文献   

18.
The gammaproteobacterium Xenorhabdus nematophila is a mutualistic symbiont that colonizes the intestine of the nematode Steinernema carpocapsae. nilB (nematode intestine localization) is essential for X. nematophila colonization of nematodes and is predicted to encode an integral outer membrane beta-barrel protein, but evidence supporting this prediction has not been reported. The function of NilB is not known, but when expressed with two other factors encoded by nilA and nilC, it confers upon noncognate Xenorhabdus spp. the ability to colonize S. carpocapsae nematodes. We present evidence that NilB is a surface-exposed outer membrane protein whose expression is repressed by NilR and growth in nutrient-rich medium. Bioinformatic analyses reveal that NilB is the only characterized member of a family of proteins distinguished by N-terminal region tetratricopeptide repeats (TPR) and a conserved C-terminal domain of unknown function (DUF560). Members of this family occur in diverse bacteria and are prevalent in the genomes of mucosal pathogens. Insertion and deletion mutational analyses support a beta-barrel structure model with an N-terminal globular domain, 14 transmembrane strands, and seven extracellular surface loops and reveal critical roles for the globular domain and surface loop 6 in nematode colonization. Epifluorescence microscopy of these mutants demonstrates that NilB is necessary at early stages of colonization. These findings are an important step in understanding the function of NilB and, by extension, its homologs in mucosal pathogens.  相似文献   

19.
为了揭示天然橡胶生物合成酶互作蛋白结构及其在天然橡胶生物合成过程中的功能。本研究以橡胶树胶乳橡胶粒子总蛋白为研究对象,采用免疫共沉淀实验技术以天然橡胶合成关键酶顺式-异戊二烯基转移酶(CPT)抗体从胶乳中捕获了1个含DUF1262结构域的未知功能蛋白。生物信息学分析表明橡胶树基因组中包含50个编码含DUF1262结构域蛋白的基因序列;蛋白质相互作用网络分析表明DUF1262结构域蛋白可能参与调节信号转导或转录调控等过程;荧光定量PCR结果表明编码该蛋白基因的转录本在根、叶、花、枝和胶乳等组织中广泛分布,但在胶乳中表达较低,在树皮表达较高;水杨酸、脱落酸、过氧化氢及干旱处理可增强该基因在叶片中的转录水平。本研究证明DUF1262参与橡胶树逆境反应等生理过程,为揭示胶乳生物合成调控机制提供新线索。  相似文献   

20.
The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号