首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects tomato and Arabidopsis plants, and is a model for studying the molecular basis of bacterial disease. Pst DC3000 secretes a battery of largely uncharacterized effector proteins into host cells via a type-III secretion system (TTSS). Little is currently known about the molecular mechanisms by which individual TTSS effectors promote virulence. The effector HopAO1 has similarity to protein tyrosine phosphatases, including a conserved catalytic site, and suppresses the hypersensitive response (HR) in some non-host plants. Whether HopAO1 has a similar effect in the host Arabidopsis is not clear. Here, we show that transgenic expression of HopAO1 in Arabidopsis suppresses callose deposition elicited by the Pst DC3000 hrpA mutant, and allows the normally non-pathogenic hrpA mutant to multiply within the leaf tissue. HopAO1 also suppresses resistance to Pst DC3000 induced by flg22, a pathogen-associated molecular pattern (PAMP). However, HopAO1 does not suppress the HR triggered by several classical avirulence genes. These results suggest that HopAO1 targets primarily PAMP-induced innate immunity in Arabidopsis. The virulence function of HopAO1 is dependent on an intact phosphatase catalytic site, as transgenic plants expressing a catalytically inactive derivative do not show these effects. Intriguingly, expression of the catalytically inactive HopAO1 has a dominant-negative effect on the function of the wild-type HopAO1. Analysis of mitogen-activated protein kinase (MAPK) activity suggests that HopAO1 targets a step downstream or independent of MAPK activation. Genome-wide expression analysis revealed that expression of several well-known defense genes was suppressed in hrpA mutant-infected HopAO1 transgenic plants.  相似文献   

2.
Sohn KH  Lei R  Nemri A  Jones JD 《The Plant cell》2007,19(12):4077-4090
The downy mildew (Hyaloperonospora parasitica) effector proteins ATR1 and ATR13 trigger RPP1-Nd/WsB- and RPP13-Nd-dependent resistance, respectively, in Arabidopsis thaliana. To better understand the functions of these effectors during compatible and incompatible interactions of H. parasitica isolates on Arabidopsis accessions, we developed a novel delivery system using Pseudomonas syringae type III secretion via fusions of ATRs to the N terminus of the P. syringae effector protein, AvrRPS4. ATR1 and ATR13 both triggered the hypersensitive response (HR) and resistance to bacterial pathogens in Arabidopsis carrying RPP1-Nd/WsB or RPP13-Nd, respectively, when delivered from P. syringae pv tomato (Pst) DC3000. In addition, multiple alleles of ATR1 and ATR13 confer enhanced virulence to Pst DC3000 on susceptible Arabidopsis accessions. We conclude that ATR1 and ATR13 positively contribute to pathogen virulence inside host cells. Two ATR13 alleles suppressed bacterial PAMP (for Pathogen-Associated Molecular Patterns)-triggered callose deposition in susceptible Arabidopsis when delivered by DC3000 DeltaCEL mutants. Furthermore, expression of another allele of ATR13 in plant cells suppressed PAMP-triggered reactive oxygen species production in addition to callose deposition. Intriguingly, although Wassilewskija (Ws-0) is highly susceptible to H. parasitica isolate Emco5, ATR13Emco5 when delivered by Pst DC3000 triggered localized immunity, including HR, on Ws-0. We suggest that an additional H. parasitica Emco5 effector might suppress ATR13-triggered immunity.  相似文献   

3.
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.  相似文献   

4.
Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots.  相似文献   

5.
6.
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.  相似文献   

7.
Reversible modifications of target proteins by small ubiquitin-like modifier (SUMO) proteins are involved in many cellular processes in yeast and animals. Yet little is known about the function of sumoylation in plants. Here, we show that the SIZ1 gene, which encodes an Arabidopsis SUMO E3 ligase, regulates innate immunity. Mutant siz1 plants exhibit constitutive systemic-acquired resistance (SAR) characterized by elevated accumulation of salicylic acid (SA), increased expression of pathogenesis-related (PR) genes, and increased resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Transfer of the NahG gene to siz1 plants results in reversal of these phenotypes back to wild-type. Analyses of the double mutants, npr1 siz1, pad4 siz1 and ndr1 siz1 revealed that SIZ1 controls SA signalling. SIZ1 interacts epistatically with PAD4 to regulate PR expression and disease resistance. Consistent with these observations, siz1 plants exhibited enhanced resistance to Pst DC3000 expressing avrRps4, a bacterial avirulence determinant that responds to the EDS1/PAD4-dependent TIR-NBS-type R gene. In contrast, siz1 plants were not resistant to Pst DC3000 expressing avrRpm1, a bacterial avirulence determinant that responds to the NDR1-dependent CC-NBS-type R gene. Jasmonic acid (JA)-induced PDF1.2 expression and susceptibility to Botrytis cinerea were unaltered in siz1 plants. Taken together, these results demonstrate that SIZ1 is required for SA and PAD4-mediated R gene signalling, which in turn confers innate immunity in Arabidopsis.  相似文献   

8.
9.
Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here,by comparing small RNA profiles of Pseudomonas syringae pv. tomato(Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis micro RNAs(mi RNAs) that are differentially regulated by AR156 pretreatment. mi R825 and mi R825 are two mi RNA generated from a single mi RNA gene.Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. mi R825 targets two ubiquitin-protein ligases,while mi R825 targets toll-interleukin-like receptor(TIR)-nucleotide binding site(NBS) and leucine-rich repeat(LRR)type resistance(R) genes. The expression of these target genes negatively correlated with the expression of mi R825 and mi R825. Moreover, transgenic plants showing reduced expression of mi R825 and mi R825 displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing mi R825 and mi R825 were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing mi R825 and mi R825 and activating the defense related genes they targeted.  相似文献   

10.
11.
为分析褪黑素(N-乙酰-5-甲氧基色胺)在植物先天免疫中的功能及调控机理,研究以病原菌丁香假单胞杆菌(Pseudomonas syringae pv.tomato DC3000,Pst DC3000)—烟草互作系统为模型,检测了病原菌侵染对烟草褪黑素相关基因表达的影响,并探讨了褪黑素对植物叶片病原菌生长以及气孔开度和活性氧自由基(reactive oxygen species,ROS)含量的影响以及调控机理。结果表明:(1)Pst DC3000处理提高了烟草褪黑素合成(NtSNAT1)和受体(NtPMTR1)基因表达,且外源褪黑素处理降低了叶片中的病原菌含量。(2)与野生型植物相比,过表达大豆GmSNAT1基因显著提高了转基因烟草中内源褪黑素含量和NtPMTR1的表达,且转基因烟草叶片中的Pst DC3000菌落数显著下降。(3)外源褪黑素和细菌鞭毛蛋白多肽flg22处理诱导了野生型和转基因烟草保卫细胞中ROS产生和气孔关闭,且转基因植物对褪黑素和flg22诱导的气孔关闭和ROS产生比野生型烟草更加敏感。综上所述,研究表明褪黑素可能通过受体NtPMTR1介导的信号途径促进保卫细胞ROS产生,诱导气孔关闭,从而降低病原菌Pst DC3000的入侵。  相似文献   

12.
13.
14.
Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. Tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H2O2 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPR1 (essential regulator of systemic acquired resistance) and maintenance of H2O2 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.  相似文献   

15.
16.
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.  相似文献   

17.
AvrBsT is a type III effector from Xanthomonas campestris pv vesicatoria that is translocated into plant cells during infection. AvrBsT is predicted to encode a Cys protease that targets intracellular host proteins. To dissect AvrBsT function and recognition in Arabidopsis thaliana, 71 ecotypes were screened to identify lines that elicit an AvrBsT-dependent hypersensitive response (HR) after Xanthomonas campestris pv campestris (Xcc) infection. The HR was observed only in the Pi-0 ecotype infected with Xcc strain 8004 expressing AvrBsT. To create a robust pathosystem to study AvrBsT immunity in Arabidopsis, the foliar pathogen Pseudomonas syringae pv tomato (Pst) strain DC3000 was engineered to translocate AvrBsT into Arabidopsis by the Pseudomonas type III secretion (T3S) system. Pi-0 leaves infected with Pst DC3000 expressing a Pst T3S signal fused to AvrBsT-HA (AvrBsTHYB-HA) elicited HR and limited pathogen growth, confirming that the HR leads to defense. Resistance in Pi-0 is caused by a recessive mutation predicted to inactivate a carboxylesterase known to hydrolyze lysophospholipids and acylated proteins in eukaryotes. Transgenic Pi-0 plants expressing the wild-type Columbia allele are susceptible to Pst DC3000 AvrBsTHYB-HA infection. Furthermore, wild-type recombinant protein cleaves synthetic p-nitrophenyl ester substrates in vitro. These data indicate that the carboxylesterase inhibits AvrBsT-triggered phenotypes in Arabidopsis. Here, we present the cloning and characterization of the SUPPRESSOR OF AVRBST-ELICITED RESISTANCE1.  相似文献   

18.
MicroRNAs (miRNAs) are key regulators of gene expression in development and stress responses in most eukaryotes. We globally profiled plant miRNAs in response to infection of bacterial pathogen Pseudomonas syringae pv. tomato (Pst). We sequenced 13 small-RNA libraries constructed from Arabidopsis at 6 and 14 h post infection of non-pathogenic, virulent and avirulent strains of Pst. We identified 15, 27 and 20 miRNA families being differentially expressed upon Pst DC3000 hrcC, Pst DC3000 EV and Pst DC3000 avrRpt2 infections, respectively. In particular, a group of bacteria-regulated miRNAs targets protein-coding genes that are involved in plant hormone biosynthesis and signaling pathways, including those in auxin, abscisic acid, and jasmonic acid pathways. Our results suggest important roles of miRNAs in plant defense signaling by regulating and fine-tuning multiple plant hormone pathways. In addition, we compared the results from sequencing-based profiling of a small set of miRNAs with the results from small RNA Northern blot and that from miRNA quantitative RT-PCR. Our results showed that although the deep-sequencing profiling results are highly reproducible across technical and biological replicates, the results from deep sequencing may not always be consistent with the results from Northern blot or miRNA quantitative RT-PCR. We discussed the procedural differences between these techniques that may cause the inconsistency.  相似文献   

19.
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.  相似文献   

20.
Previous studies have established that mutations in the NDR1 gene in Arabidopsis thaliana suppress the resistance response of three resistance proteins, RPS2, RPM1, and RPS5, to Pseudomonas syringae pv. tomato (Pst) strain DC3000 containing the cognate effector genes, avrRpt2, avrRpm1, and avrpPhB, respectively. NDR1 is a plasma membrane (PM)-localized protein, and undergoes several post-translational modifications including carboxy-terminal processing and N-linked glycosylation. Expression of NDR1 under the NDR1 native promoter complements the ndr1-1 mutation, while overexpression of NDR1 results in enhanced resistance to virulent Pst. Sequence analysis and mass spectrometry suggest that NDR1 is localized to the PM via a C-terminal glycosylphosphatidyl-inositol (GPI) anchor. GPI modification would potentially place NDR1 on the outer surface of the PM, perhaps allowing NDR1 to act as a transducer of pathogen signals and/or interact directly with the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号