首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
神经-血管偶联机制至今还没有完全被阐明.对脑微循环的研究表明,位于皮层内的微动脉的舒张代表着神经-血管偶联过程中的最初血流响应机制.一氧化氮(NO)被认为是介导微动脉舒张的最重要因子之一,为了探讨NO在微动脉舒张过程中作为关键因子的作用,本文开展了基于大脑功能柱水平,由功能刺激产生的NO在神经-血管偶联过程中扩散动力学的时空模式的仿真建模研究.在大脑功能柱形态分析的基础上,建立NO扩散数学模型.应用该模型,清晰地阐述了由功能刺激产生的NO在时间维度和空间维度的扩散过程.计算机仿真结果表明,由功能刺激产生的NO,其扩散主要被限制在功能柱内.因此,NO作用的影响区域也就被限制在功能柱内.在时间维度上,NO信号大约维持1s左右.本研究从四维时空角度探讨由功能刺激产生的血管舒张因子的响应模式,为最终阐明神经-血管偶联机制提供了一种新的途径.  相似文献   

2.
一氧化氮在植物体内的来源和功能   总被引:10,自引:0,他引:10  
一氧化氮(nitric oxide,NO)是生物体内重要的活性分子。NO参与了动物体内血管松弛、神经传递及免疫防御反应等一系列生理功能而被认为是可扩散的多功能第二信使。在植物体内NO也是一种广泛存在的信号分子,参与调节了许多重要的生理过程如生长、发育、抗病防御反应、细胞程序性死亡和抗逆反应。对NO在植物体内的来源、信号转导、调节植物生长发育和对胁迫的响应方面所发挥的作用进行了综述,并讨论了其潜在的一些功能。  相似文献   

3.
一氧化氮在植物对病原物反应中的信号作用   总被引:5,自引:1,他引:4  
一氧化氮(NO)作为一种新型的细胞间和细胞内信息传递的信使分子,在人体与动物的神经、心血管和免疫等系统中的作用已引起人们的普遍关注,它广泛存在于生物界包括植物和微生物中[1]。已证明植物中也存在与哺乳动物类似的一氧化氮合成酶(ni-tric oxide synthase,NOS)[2,3],它摧化合成的NO可影响叶和根的生长、植保素的形成[3,4],在植物生长、发育和抗病反应中起作用。Durner等[2]和Delledonne等[3]最近证明,NO在植物抗病的过敏反应(hypersensi-tive response)中也可作为信号物与活性氧协同作用,激活植物抗病基因表达,参与植物的抗病反应,是过敏反应所必须的。但植物中NO的作用研究还刚开始,前景诱人。本文简要介绍NO在植物抗病反应中的作用及其模式。1 NO作为气体信号分子的作用1.1 NO生物学活性的发现 19世纪医学上就开始用NO的生成剂有机硝酸酯和硝酸甘油治疗心脏缺血,但一直未认识到其本质就是NO在起作用,更未意识到内源NO的存在所起的重要的生物学意义。70年代由于对亚硝胺的致癌作用的研究,人们发现巨噬细胞能被L-精氨酸及NO所激活,而增强巨噬细胞的杀菌和杀肿瘤作用。80年代,Furchgott等发现促进血管扩张的内皮衍生因子就是NO,硝酸甘油的扩血管作用是源于这一功能的活性代谢产物NO。随后,Garth-waite等发现NO在中枢神经系统中起作用,并证实脑细胞中存在一氧化氮合成酶[1,4]。80年代以来,人们通过对血管内皮衍生因子化学本质(即NO的揭示),以及NO在巨噬  相似文献   

4.
HIF-NOS信号通路对哺乳动物卵巢NO依赖性功能的调控作用   总被引:1,自引:0,他引:1  
一氧化氮(NO)作为气体明星分子和信号分子,在哺乳动物体内不同的生理调节过程中具有非常重要的作用,尤其是哺乳动物卵巢功能的调控.一氧化氮合酶(NOS)是NO合成的限速酶,是调节NO合成的关键环节,也是NO依赖性功能调控的重要环节.因此,调节NOS转录/合成的信号通路对哺乳动物卵巢NO依赖性功能具有至关重要的调控作用.最近的研究发现,缺氧诱导因子(HIF)作为转录因子,参与许多与缺氧相关靶基因的转录调控,如NOS和血管内皮生长因子(VEGF)等.本文一方面描述了NO合成及其调控的分子机制,另一方面阐明了HIF作为转录因子对NOS的转录调控,从而揭示HIF在NO依赖性卵巢功能调控中的重要作用,同时为进一步研究哺乳动物卵巢功能的调控提供新的研究方向和理论基础.  相似文献   

5.
一氧化氮(NO)是心血管系统、免疫系统和中枢神经系统中重要的信号分子。适应性免疫系统由T淋巴细胞和B淋巴细胞组成,其主导的细胞免疫应答和体液免疫应答是机体清除病原、维持免疫稳态的核心。NO在适应性免疫细胞的发育、分化、激活等多种过程中发挥重要作用,同时对适应性免疫反应参与的肿瘤、自身免疫病、心血管疾病、病毒感染等多种病理过程具有重要的调控作用。因此,认识NO信号在适应性免疫中的作用; NO对适应性免疫系统相关疾病的研究和干预靶点的寻找至关重要。本文将从NO的来源和多种作用机制出发,集中介绍NO在适应性免疫系统及自身免疫病等多种相关疾病中的研究进展。  相似文献   

6.
胰岛素促进血管内皮细胞产生一氧化氮的实验研究   总被引:4,自引:0,他引:4  
目的:探讨胰岛素对血管内皮细胞增殖、NO产生和NOS基因表达的影响。方法:培养牛主动脉内皮细胞,测定培养上清液中NO氧化产物NO2^-的水平并应用定量RT-PCR技术检测内皮细胞NOS mRNA的表达水平。结果:①胰岛素对大血管内皮细胞无细胞毒作用,也不影响细胞增殖;②在1-15μg/ml浓度范围内,胰岛素加强内皮细胞释放NO,且呈剂量依赖的方式,NOS特异性抑制剂L-NAME可阻抑之;③胰岛素轻度增加NOS mRNA表达水平,但无统计学意义。结论:胰岛素既不影响大血管内皮细胞增殖,也不影响内皮细胞NOS mRNA表达水平,但以剂量依赖的方式加强内皮细胞产生NO,推测其诱导NO产生的机制可能是通过酶活性的诱导,加速NO的合成。  相似文献   

7.
NO是一种具有重要生物学意义的信息分子,在体内具有广泛的生物学特征。但由于NO的自由基性质,使得在活细胞中对低浓度、低寿命的NO实时监测异常困难。为了进一步了解NO在神经、免疫、血管和消化等多种系统中的生理功能,高度专一性的、高灵敏的荧光探针结合激光扫描共聚焦显微镜对活细胞中的NO进行实时、连续的成像已被广泛研究。该综述了近年来NO荧光探针的发展及其在生物成像中的应用。  相似文献   

8.
腺苷和一氧化氮(Nitric oxide,NO)都是十分活跃的具有多种生物活性的内源性物质。近年来,关于腺苷和NO在周围组织和中枢神经系统中的相互作用被广泛关注。腺苷在中枢神经系统中广泛存在,可作为整合中枢兴奋和抑制性神经递质的调节因子;NO在中枢神经系统中具有广泛的生物学意义,既兼有第二信使和神经递质的性能,又是效应分子,参与多种生理功能,代谢衍生物有一定的中枢神经毒性。在中枢神经系统中,腺苷和NO之间可能有一定联系,本文综述了二者在中枢神经系统中的相互作用及其与癫痫的相关性,以期为中枢神经系统相关疾病的发病机制研究及防治方法提供新的思路。  相似文献   

9.
近年来,随着脑膜淋巴管(meningeal lymphatic vessels, MLVs)研究的进一步深入,越来越多的证据表明MLVs在中枢神经系统疾病的发生发展中扮演着重要角色,而血管内皮生长因子C (vascular endothelial growth factor-C, VEGF-C)/血管内皮生长因子受体3 (vascular endothelial growth factor receptor-3,VEGFR-3)信号通路在MLVs重塑中起到重要作用。本文拟对VEGF-C/VEGFR-3信号通路的作用机制及其介导的MLVs重塑在阿尔茨海默病、多发性硬化症、创伤性脑损伤等中枢神经系统疾病的发病和进展中的作用进行综述,旨在为中枢神经系统疾病的治疗提供新策略。  相似文献   

10.
缺血性卒中是临床常见疾病,且致死致残率高,幸存的患者预后多不同程度的患有偏瘫等后遗症,但目前还没有好的治疗方法。很长一段时间以来,卒中后的治疗关注点在于神经元的保护,割裂了神经元和周围细胞的联系。2001年,"神经血管单元"概念的提出为缺血性卒中的临床治疗提供了新的角度。此外,有研究表明Notch信号通路参与了神经、血管再生过程,对于卒中后神经血管单元的修复有调节作用。因此,本文从神经血管单元和Notch信号通路两个切入点综述了二者在缺血性卒中发生后的作用。  相似文献   

11.
Hydrogen sulfide has recently been considered to have an important role as a gasotransmitter in the cardiovascular system as well as in the central nervous system, but its action seems directly related to the presence of nitric oxide/nitric oxide-derivatives. We report here chemical evidence that emphasizes a prominent role of the hydrogen sulfide as cofactor of NO-derivatives in inducing nitric oxide release.  相似文献   

12.
13.
Nitric oxide is a versatile mediator formed by enzymes called nitric oxide synthases. It has numerous homeostatic functions and important roles in inflammation. Within the inflamed brain, microglia and astrocytes produce large amounts of nitric oxide during inflammation. Excessive nitric oxide causes neuronal toxicity and death and mesenchymal stem cells can be used as an approach to limit the neuronal damage caused by neuroinflammation. Mesenchymal stem cell therapy ameliorates inflammation and neuronal damage in disease models of Alzheimer’s disease, Parkinson’s disease, and other neuroinflammatory disorders. Interestingly, we have reported that in vitro, mesenchymal stem cells themselves contribute to a rise in nitric oxide levels through microglial cues. This may be an undesirable effect and highlights a possible need to explore acellular approaches for mesenchymal stem cell therapy in the central nervous system.  相似文献   

14.
一氧化氮是重要的信使分子,在生物体内参与众多生理及病理过程。生物体内存在着复杂的一氧化氮合酶活性调控机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶催化生成。神经型一氧化氮合酶的活性主要受到翻译后水平上钙离子和钙调蛋白的调控,其调控方式包括二聚化、多位点的磷酸化和去磷酸化,以及主要由PDZ结构域介导的蛋白质-蛋白质相互作用。一氧化氮本身对其合酶的活性具有负反馈调控作用。近年来的研究提示,细胞质膜上的脂筏微区在神经性一氧化氮合酶的活性调控中也起到重要的调节作用。  相似文献   

15.
Unraveling the biological significance of nitric oxide   总被引:4,自引:0,他引:4  
Independent investigations into the biochemical changes and cytostatic properties induced in immunostimulated macrophages and studies involving the identity and mechanism of action of endothelium-derived relaxing factor led to the finding of a new metabolic pathway which converts L-arginine to nitric oxide and citrulline. The pathway has since been reported in a number of additional cell types including cells in the central nervous system (CNS). In the endothelium and CNS nitric oxide is acting as a signaling agent with the evidence supporting activation of the enzyme guanylate cyclase in the target cell. Nitric oxide is toxic and evidence supports a cytostatic/cytotoxic function as the primary action of macrophage-derived nitric oxide.  相似文献   

16.
Histochemistry of nitric oxide synthase in the nervous system   总被引:3,自引:0,他引:3  
Summary Nitric oxide synthase, which generates the physiological messenger molecule nitric oxide, and its associated NADPH diaphorase (NADPHd) activity are distributed throughout selective neuronal populations of the central and peripheral nervous system. Considerable evidence has been accumulated to indicate that NADPHd activity labels cells lacking neuronal nitric oxide synthase, i.e., the specificity of the reaction has to be considered for the reliable detection of the enzyme in neuronal but also non-neuronal tissue. In the present review, critical aspects of nitric oxide synthase visualization in neurones, using its NADPHd activity, are discussed. Furthermore, the organization of the central and peripheral nitric oxide synthase-containing neuronal systems is described. Nitric oxide synthase is present in local cortical and striatal neurones, hypothalamic magnocellular neurones, mesopontine cholinergic neurones, cerebellar interneurones, preganglionic sympathetic and parasympathetic neurones, neurones in parasympathetic autonomic and enteric ganglia and primary viscero-afferent neurones. Finally, injury-related alterations in nitric oxide synthase activity are briefly outlined. In this respect, the histochemistry of nitric oxide synthase may represent a valuable marker for neurochemical, if not structural, alterations observed in neural diseases, regeneration and transplantation.  相似文献   

17.
Nitric oxide (NO) acts as an intercellular messenger molecule in the nervous system. In the adrenal gland sympathetic preganglionic fibers innervating the medulla, as well as intrinsic neural ganglion cells, contain nitric oxide synthase (NOS). Nitric oxide stimulates the soluble enzyme guanylate cyclase forming cyclic GMP (cGMP). Using sodium nitroprusside (SNP) as nitric oxide donor we have studied the putative target cells for nitric oxide in the rat adrenal gland, both in vivo and in vitro. The guinea pig and a few mouse adrenal glands were studied after SNP perfusion for comparison. Our results show that after vascular perfusion with a high concentration (3 mM) of SNP both noradrenaline and adrenaline chromaffin cells express cGMP-like immunoreactivity in all three species. After incubation of rat adrenal slices with SNP primarily the noradrenaline chromaffin cells are cGMP-positive. In contrast, detectable levels of cGMP-like immunoreactivity were not found in neuronal ganglion cells. In the adrenal cortex cGMP-like immunoreactivity was seen in blood vessel walls, in small cells with processes forming a reticular network, at least partly presumably representing endothelial cells, as well as in some presumable nerve terminals. These findings support the view that chromaffin cells, especially the noradrenergic ones and blood vessels, are targets for nitric oxide in the adrenal gland.  相似文献   

18.
Brain iNOS: current understanding and clinical implications.   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is a unique informational substance first identified as the endothelium-derived relaxing factor. It is generated by NO synthases and plays a prominent role in controlling a variety of organ functions in the cardiovascular, immune, reproductive and nervous systems. Inducible nitric oxide synthase (iNOS) is not normally present in the brain in youth but it can be detected in the brain after inflammatory, infectious or ischemic damage, as well as in the normal, aging brain. Brain iNOS seems to contribute to the pathophysiology of many diseases that involve the central nervous system, but the role of iNOS appears to go beyond tissue damage. Brain iNOS might be required for adequate repair following injury or damage. The effects of brain iNOS on the balance between damage and repair make this enzyme a promising therapeutic target in human disease.  相似文献   

19.
Nitric oxide and muscarinic agonists both stimulate motoneuron spike activity and cGMP production in the central nervous system of larval Manduca sexta. The possible role of nitric oxide in mediating muscarinic changes in excitability was examined by measuring cGMP accumulation and proleg motoneuron activity while blocking or mimicking the production of nitric oxide. All the muscarinic-induced changes in cGMP are blocked by the nitric oxide-synthase inhibitor, nitro-l-arginine, an effect that is partially prevented by co-incubation with arginine. Action potential blockage with tetrodotoxin revealed that muscarinic increases in cGMP production have both spike-dependent and spike-independent mechanisms. Furthermore, nitric oxide donors can increase proleg motoneuron activity and this stimulation is blocked by 1H-{1,2,4}oxadiazolo{4, 3-a}quinoxalin-1-one suggesting that it is mediated by a nitric oxide-sensitive guanylyl cyclase. In contrast, nitro-l-arginine and a variety of other nitric oxide-synthase inhibitors and nitric oxide scavengers have no significant effect on muscarinic stimulation of motoneuron activity. Therefore, although a nitric oxide sensitive guanylyl cyclase is capable of elevating spike activity and muscarinic agonists can increase cGMP, this mechanism is not necessary for the normal muscarinic increase in excitability. It is concluded that muscarinic receptors are coupled to nitric oxide and cGMP production in neurons other than those controlling the prolegs. Accepted: 22 July 1999  相似文献   

20.
The central nervous system plays an important role in the regulation of blood pressure via the sympathetic nervous system. Abnormal regulation of the sympathetic nerve activity is involved in the pathophysiology of hypertension. In particular, the brain stem, including the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM), is a key site that controls and maintains blood pressure via the sympathetic nervous system. Nitric oxide (NO) is a unique molecule that influences sympathetic nerve activity. Rho-kinase is a downstream effector of the small GTPase, Rho, and is implicated in various cellular functions. We developed a technique to transfer adenovirus vectors encoding endothelial nitric oxide synthase and dominant-negative Rho-kinase into the NTS or the RVLM of rats in vivo. We applied this technique to hypertensive rats to explore the physiological significance of NO and Rho-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号