首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

2.
A sensitive analytical procedure for the determination of residues of leucomalachite green (LMG)-malachite green (MG) and leucogentian violet (LGV)-gentian violet (GV) in catfish or trout tissue is presented. Frozen (−20°C) fish fillets were cut into small pieces and blended in a Waring blender. A 20-g amount of homogenized fish tissue was extracted with acetonitrile-buffer, partitioned against methylene chloride, and cleaned up on tandem neutral alumina and propylsulfonic acid cation-exchange solid-phase extraction cartridges. Samples of 100 μl (0.8 g equiv.) were chromatographed isocratically in 10 min using an acetonitrile-buffer mobile phase on a short-chain deactivated (SCD) reversed-phase column (250×4.6 mm I.D.) in-line with a post-column PbO2 oxidation reactor. The PbO2 post-column reactor efficiently oxidized LMG to the chromatic MG, and LGV to the chromatic GV permitting visible detection at 588 nm for all four compounds. Linearity was demonstrated with standards over the range of 0.5–50 ng per injection. Recoveries of LMG, MG, LGV and GV from catfish tissues fortified at 10 ng/g were 75.4±3.0, 61.3±4.1, 72.6±3.7 and 87.9±2.5, respectively, while trout tissues fortified at 10 ng/g yielded recoveries of 82.6±2.3, 48.6±1.8, 72.1±2.1 and 83.8±4.6 (mean±S.D., N=4), respectively.  相似文献   

3.
A liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed for the quantitation of urinary leukotriene E4 (LTE4). LTE4 and its internal standard were extracted by solid-phase extraction and analysed using LC–MS–MS in the selected reaction monitoring (SRM) mode. A good linear response over the range of 10 pg to 10 ng was demonstrated. The accuracy of added LTE4 ranged from 97.0% to 108.0% with a mean and SD of 100.6±2.4%. We detected LTE4 (63.1±18.7 pg/mg creatinine, n=10) in healthy human urine. This method can be used to determine LTE4 in biological samples.  相似文献   

4.
This paper describes the development of an isocratic reversed-phase high-performance liquid chromatographic method for the routine analysis of recombinant interleukin-2 (rIL-2) in liposome samples. The chromatographic system employed a C4 column maintained at 30°C eluted with 52.5% (w/w) acetonitrile in water, containing 100 mM NaClO4 and 10 mM HClO4. To remove phospholipid interference the chromatographic method was combined with a lipid-extraction procedure. No significant loss of rIL-2 was noted upon inclusion of this extraction step. The protein eluted from the column with a capacity factor (k′) of 5.8. The method was validated for robustness, linearity, precision and reproducibility. It was shown that the method was linear over a sample concentration range of 1–100 μg/ml. Upon assessment of the intra-day and inter-day precision, the relative standard deviations (RSD) were within the range of the methodical error (approximately 5%), except at the lower concentration of 10 μg/ml, where the intra-day RSD was relatively high (17.8%). The recovery of rIL-2 upon liposome preparation and subsequent analysis of the samples was in the range 94±9%. The results indicate that the method is suitable for routine quantitation of rIL-2 in liposomal samples.  相似文献   

5.
A rapid and selective high-performance liquid chromatographic assay for simultaneous quantitative determination of a new antifilarial drug (UMF-058, I) and mebendazole (MBZ) is described. After a simple extraction from whole blood, both compounds were analysed using a C18 Nova Pak reversed-phase column and a mobile phase of methanol—0.05 M ammonium dihydrogenphosphate (50:50, v/v) adjusted to pH 4.0, with ultraviolet detection at 291 nm. The average recoveries of I and MBZ over a concentration range of 25–250 ng/ml were 92.0 ± 7.7 and 84.4 ± 4.4%, respectively. The minimum detectable concentrations in whole blood for I and MBZ were 7 and 6 ng/ml, respectively. This method was found to be suitable for pharmacokinetic studies.  相似文献   

6.
Synthetic vitamin K3 (VK3, 2-methyl-1,4-naphthoquinone, or menadione) has been found to exhibit antitumor activity against various human cancer cells at relative high dose. Parallel to our study on the mechanism of VK3 action and for future clinical trials in Taiwan, we developed a simple, sensitive and accurate high-performance liquid chromatographic method for the determination of VK3 in biological fluids. VK3 was extracted from the plasma samples with n-hexane. The chromatographic separation employed an ODS analytical column (5 μm, 250 × 4.6 mm I.D.) with a mobile phase of methanol-water (70:30 v/v) and UV detection at 265 nm. On completely drying of the extraction solution, n-hexane, by a stream of nitrogen, menadione was lost to a great extent. Methanol (70%, 200 μl) was added to the extraction solvent after extraction and centrifugation to prevent the loss of menadione. The absolute recovery was 82.4±7.69% (n = 7). The within-day and between-day calibration curves of VK3 in plasma in the ranges of interest (0.01–10.00 μg/ml; 0.01–5.00 μg/ml) showed good linearity (r>0.999) and acceptable precision. The limit of quantitation of VK3 was 10 ng/ml) showed good method has been succesfully applied to a pilot pharmacokinetic study of VK3 in rabbits receiving an intravenous high-dose bolus injection of 75 mg menadiol sodium diphosphate (Synkayvite). The pharmacokinetic properties of menadione could be described adequately by an open two-compartment model. The mean half-life of menadiol (transformation to menadione) was 2.60±0.12 min. The elimination half-life, volume of distribution and plasma clearance of menadione were 26.3±2.97 min, 25.7±0.78 1, and 0.68±0.10 1/min, respectively.  相似文献   

7.
The thermal coefficient of expansion of egg lecithin bilayer thickness, αd1, was measured as a function of its cholesterol content up to mole ratio lecithin/cholesterol of 1:1, and over the temperature range 0–40 °C. At all cholesterol contents αd1 changes abruptly at approximately 12 °C indicating a structural transition at this temperature. Above 12 °C, αd1 decreases monotonically from −2·10−3 for pure egg lecithin to −1·10–3 at mole ratio 1:1. Below 12 °C αd1 is walways higher than above 12 °C and shows a sharp, anomalously high value of −6·10−3 at the mole ratio 2:1. The results have been interpreted as the movement of cholesterol into the bilayer or the formation of lecithin-cholesterol “complexes” at temperatures below 12 °C. Similar studies with phosphatidylinositol containing cholesterol showed no structural transition and lysolecithin containing cholesterol behaved differently giving two lamellar phases in equilibrium.  相似文献   

8.
7-[(2,2-Dimethyl)propyl)]-1-methylxanthine (I, Lab code MX2/120) is a new potent antibronchospastic agent. A rapid and simple HPLC assay for I in guinea pig plasma has been developed. Compound I was extracted from plasma with dichloromethane by a solid-phase extraction procedure, after adding 1,3-dimethyl-7-pentylxanthine at a concentration of 5 μg/ml as the internal standard (I.S.). The extraction residue was redissolved in water—acetonitrile and chromatographed on a RP-18 reversed-phase column. The eluate was monitored by spectrophotometric detection at 280 nm. The method showed good linearity over the range 0.1–20 μg/ml (r = 0.9998) and is precise (C.V. × Student's T-TEST = 1.84%) and accurate (mean recovery ± limit of CONFIDENCE = 100.25 ± 0.34). The HPLC assay was successfully applied to the determination of the pharmacokinetic profile of I after intravenous and oral administration in guinea pigs. The main pharmacokinetic parameters are presented.  相似文献   

9.
A sensitive gas chromatographic—mass spectrometric method for the quantitation of (±)-methyl 3-phenyl-2(E)-propenyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate (OPC-13340, I), a new dihydropyridine calcium antagonist with a potent and long-acting antihypertensive and antianginal effect, was developed in order to elucidate its pharmacokinetics. Dihydropyridine calcium antagonists have been usually quantified by this technique in the negative-ion chemical ionization mode. However, direct application of this method to quantify trace amounts of I in biological fluids completely failed, owing to its adsorption on the column and oxidation of its dihydropyridine ring. Human plasma containing I and (±)-[2H5]methyl 3-phenyl-2(E)-propenyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate (II), the internal standard, was extracted with n-hexane—diethyl ether under weakly basic conditions (pH 8). In order to prevent adsorption of the compounds on the column, (±)-[2H3]ethyl 3-phenyl-2(E)-propenyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate (III), an analogue of I, was added to the extracts as a carrier. In addition, this carrier was also effective in preventing the oxidation of I. The quantitation limit of I in human plasma by this method was found to be less than 30 pg/ml. Thus, the method is sufficiently sensitive to study the pharmacokinetics of I in humans.  相似文献   

10.
As a part of a pilot clinical study, a high-performance reversed-phase liquid chromatography analysis was developed to quantify temozolomide in plasma and urine of patients undergoing a chemotherapy cycle with temozolomide. All samples were immediately stabilized with 1 M HCl (1 + 10 of biological sample), frozen and stored at −20°C prior to analysis. The clean-up procedure involved a solid-phase extraction (SPE) of clinical sample (100 μl) on a 100-mg C18-endcapped cartridge. Matrix components were eliminated with 750 μl of 0.5% acetic acid (AcOH). Temozolomide was subsequently eluted with 1250 μl of methanol (MeOH). The resulting eluate was evaporated under nitrogen at RT and reconstituted in 200 μl of 0.5% AcOH and subjected to HPLC analysis on an ODS-column (MeOH-0.5% AcOH, 10:90) with UV detection at 330 nm. The calibration curves were linear over the concentration range 0.4–20 μg/ml and 2–150 μg/ml for plasma and urine, respectively. THe extraction recovery of temozolomide was 86–90% from plasma and 103–105% from urine over the range of concentrations considered. The stability of temozolomide was studied in vitro in buffered solutions at RT, and in plasma and urine at 37°C. An acidic pH (<5–6) shoul be maintained throughout the collection, the processing and the analysis of the sample to preserve the integrity of the drug. The method reported here was validated for use in a clinical study of temozolomide for the treatment of metastatic melanoma and high grade glioma.  相似文献   

11.
A specific, sensitive and accurate quantitation method for glyceryl trinitrate was developed using gas chromatography—negative ion chemical ionization—selected ion monitoring with dichloromethane as a reagent gas. [15N3] and [2H5, 15N3] variants were synthesized from non-labelled or [2H8]glycerol and [15N]nitric acid. The former variant was used for preventing adsorption of glyceryl trinitrate onto active sites on column materials and the latter was used as an internal standard for quantitation of glyceryl trinitrate in biological fluids by selected ion monitoring. The quantitation limit of this method is 0.1 ng/ml of human plasma. When glyceryl trinitrate was administered intravenously in the dose of 4 μg/kg to patients receiving hypotensive anesthesia for surgical operation, the plasma levels exhibited a biexponential decay. The mean and standard deviation of half-lives of the α and β phases were found to be about 0.41 ± 0.13 and 5.34 ± 1.60 min, respectively.  相似文献   

12.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

13.
The pulmonary formation of prostacyclin (PGI2), as reflected by the difference in concentration of pulmonary and systematic arterial radioimmunoassayed 6-keto-PGF, was determined in six healthy waking subjects. The systematic arterial 6-keto-PGF levels were low (50 pg/ml), and no evidence of pulmonary formation and release of the compound was noted. In other experiments systemic arterial 6-keto-PGF levels were determined in patients prior to and during artificial ventilation, as well as during and after occlusion of the pulmonary circulation (extra-corporeal circulation, ECC). The arterial 6-keto-PGF concentration prior to artificial ventillation was 17±4 pg/ml, i.e. within the range observed in the healthy subjects. During artificial ventilation the arterial levels of 6-keto-PGF increased to 191±21 pg/ml, suggesting that pulmonary formation of PGI2 was stimulated. In the patients subjected to ECC with occluded pulmonary circulation the arterial content of 6-keto-PGF was stabilised at an elevated level (120−170 pg/ml). Following re-establishment of the pulmonary circulation the arterial concentrations of 6-keto-PGF increased markedly, to 284±50 pg/ml. It is suggested that the basal pulmonary formation of PGI2 in man is low or non-existent, and that enhanced formation of the compound in the lungs is a consequence of intervention with normal pulmonary ventilation or perfusion.  相似文献   

14.
Low concentrations of prostaglandins (PG) could be related to male clinical infertility although relevant experimental data are scarce. The aim of this work is to establish reliable seminal PG levels in fertile men by rigorous sample control, to prevent degradation, and by rapid and simple extraction and assay procedures.Single semen samples from healthy fertile men were immediately centrifuged (within 30 min of ejaculation) adding PGF D4 to the seminal plasma as internal standard. The samples were next ultrafiltered and the PGs in the ultrafiltrate were derivatized with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and piperidine (1:1) at 60° for 30 min. Optimum gas—liquid chromatographic separation of all of the peaks of interest was achieved on 4 m × 1/4 in. I.D. Dexsil 300 packed columns at 280°. The detection and quantitation of all the peaks of interest depends on the selected ion monitoring of specific masses. The values obtained (in μg/ml, range in parentheses) were: PGEs, 63.5 ± 49.3 (9–164); PGFs, 2.6 ± 1.92 (0.95–6.63); 19-OH PGEs, 592.6 ± 312.5 (142.1–1047); and 19-OH PGFs, 12.66 ± 5.21 (4–19). Individual values for members of both series I and II are also presented.The sample collection and extraction procedures were further checked by high-performance liquid chromatography on a μPorasil column, with individual isolation and collection of all of the PGs, including the 19-OH PGs not previously separated by liquid chromatography.  相似文献   

15.
An isocratic high-performance liquid chromatographic method has been developed to determine ciprofloxacin levels in chinchilla plasma and middle ear fluid. Ciprofloxacin and the internal standard, difloxacin, were separated on a Keystone ODS column (100 × 2.1 mm I.D., 5 μm Hypersil) using a mobile phase of 30 mM phosphate buffer (pH 3), 20 mM triethylamine, 20 mM sodium dodecyl sulphate—acetonitrile (60:40, v/v). The retention times were 3.0 min for ciprofloxacin and 5.2 min for difloxacin. This fast, efficient protein precipitation procedure together with fluorescence detection allows a quantification limit of 25 ng/ml with a 50 μl sample size. The detection limit is 5 ng/ml with a signal-to-noise ratio of 5:1. Recoveries (mean ± S.D., n = 5) at 100 ng/ml in plasma and middle ear fluid were 89.4 ± 1.2% and 91.4 ± 1.6%, respectively. The method was evaluated with biological samples taken from chinchillas with middle ear infections after administering ciprofloxacin.  相似文献   

16.
Simultaneous determination of urinary excretion rates of primary unmetabolized prostanoids and their enzymatic metabolites were performed by gas chromatography-mass spectrometry (GC/MS) or tandem mass spectrometry (GC/MS/MS). Changes in kidney function were induced by acute (4 h) volume expansion. Despite marked changes in urine flow, GFR, urinary pH, osmolality, sodium and potassium excretion, only a insignificant or transient rise in the enzymatic prostanoid metabolites (2,3-dinor-6-keto-PGF, PGE-M, 2,3-dinor-TxB2 and 11-dehydro-TxB2) was observed. The excretion rates of the primary prostanoids were elevated in parallel with the rise in urine flow: PGE2 rose (p < 0.05) from 14.2 ± 4.0 to 86.2 ± 20.7, PGF2α from 60.0 ± 4.9 to 119.8 ± 24.0, 6-keto-PGF from 7.2 ± 1.3 to 51.5 ± 17.0, and txB2 from 11.2 ± 3.3 to 13.6 ± 3.6 ng/h/1.73 m2 ( ) at the maximal urine flow. Except for 6-keto-PGF and TxB2, this rise in urinary prostanoid levels was only transient despite a sustained fourfold elevated urine flow. We conclude that urine flow rate acutely affect urine prostanoid excretion rates, however, over a prolonged peroid of time these effects are not maintained. The present data support the concept that urinary levels of primary prostanoids mainly reflect renal concentrations whereas those of enzymatic metabolites reflect systemic prostanoid activity. From the excretion pattern of TxB2 one can assume that this prostanoid represents renal as well as systemic TxA2 activity.  相似文献   

17.
The diffusion translational coefficient DT of core particles in monodisperse solutions has been measured by the quasielastic light scattering method in a large scale of salinities over the range 6.10−4 to 2M Na+ or K+. The observed values of DT are independent of particle concentration in the range 0.1–2 mg/ml and do not vary with the scattering vector q corresponding to scattering angles between 40°–120°. When the salinity is progressively raised an increase of DT from 1.9.10−7 cm2s−1 to 3.2.10−7 cm2s−1 was observed at about 2.10−3 M NaCl followed by a decrease of DT beyond 0.6 M NaCl.The various possible causes of the changes of DT such as interactions between particles or between particles and salt ions are discussed. We show that the single low ionic strength change is due to a conformational transition of the core particles, while the second variation of DT accompanies the disorganization of the core particles.  相似文献   

18.
19.
A vasoactive intestinal peptide-sensitive adenylate cyclase in intestinal epithelial cell membranes was characterized. Stimulation of adenylate cyclase activity was a function of vasoactive intestinal peptide concentration over a range of 1 · 10−10−1 · 10−7 M and was increased six-times by a maximally stimulating concentration of vasoactive intestinal peptide. Half-maximal stimulation was observed with 4.1 ± 0.7 nM vasoactive intestinal peptide. Fluoride ion stimulated adenylate cyclase activity to a higher extent than did vasoactive intestinal peptide. Under standard assay conditions, basal, vasoactive inteetinal peptide- and fluoride-stimulated adenylate cyclase activities were proportional to time of incubation up to 15 min and to membrane concentration up to 60 μg protein per assay. The vasoactive intestinal peptide-sensitive enzyme required 5–10 mM Mg2+ and was inhibited by 1 · 10−5 M Ca2+. At sufficiently high concentrations, both ATP (3 mM) and Mg2+ (40 mM) inhibited the enzyme.Secretin also stimulated the adenylate cyclase activity from intestinal epithelial cell membranes but its effectiveness was 1/1000 that of vasoactive intestinal peptide. Prostaglandins E1 and E2 at 1 · 10−5 M induced a two-fold increase of cyclic AMP production. Vasoactive intestinal peptide was the most potent stimulator of adenylate cyclase activity, suggesting an important physiological role of this peptide in the cyclic AMP-dependent regulation of the intestinal epithelial cell function.  相似文献   

20.
Headspace solid-phase microextraction (HS-SPME) was utilized for the determination of three dichlorobenzene isomers (DCBs) in human blood. In the headspace at 30°C, DCBs were absorbed for 15 min by a 100-μm polydimethylsiloxane (PDMS) fiber. They were then analyzed by capillary column gas chromatography–mass spectrometry (GC–MS). By setting the initial column oven temperature at 20°C, the three isomers were resolved at the baseline level. p-Xylene-d10 was used as the internal standard (I.S.). For quantitation, the molecular ion at m/z 146 for each isomer and the molecular ion at m/z 116 for I.S. were selected. For day-to-day precision, relative standard deviations in the range 3.2–10.7% were found at blood concentrations of 1.0 and 10 μg/ml. Each compound was detectable at a level of at least 0.02 μg per 1 g of whole blood (by full mass scanning). HS-SPME–GC–MS, when performed at relatively low temperatures, was found to be feasible in toxicological laboratories. Using this method, the plasma levels of one patient who had drunk a pesticide-like material were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号