首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acclimation of Soybean Nodules to Changes in Temperature   总被引:7,自引:5,他引:2       下载免费PDF全文
This study examines how O2 status, respiration rate, and nitrogenase activity of soybean (Glycine max) nodules acclimate to short-term (<30 min) temperature change from 20 to 15[deg]C or from 20 to 25[deg]C. Acclimation responses were compared between nodules on uninhibited plants and nodules that were severely O2 limited by exposure to Ar:O2. In uninhibited nodules the decrease in temperature caused a rapid inhibition of nitrogenase activity followed by partial recovery, whereas in Ar:O2-inhibited nodules the temperature decrease caused a minor stimulation followed by a gradual decline in nitrogenase activity. In contrast, the temperature increase caused a gradual increase in nitrogenase activity in uninhibited nodules, and an initial inhibition followed by a rapid rise in Ar:O2-inhibited nodules. In both uninhibited and Ar:O2-inhibited nodules, temperature had only minor effects on the degree to which nitrogenase activity was limited by O2 supply, but nodule permeability to O2 diffusion was greater at 25[deg]C, and less at 15[deg]C, than that measured at 20[deg]C. On the basis of these data, we propose that temperature change alters the nodule's respiratory demand and that the observed changes in nodule permeability occur to maintain control over the infected cell O2 concentration as the O2 demand increases at high temperature or decreases at low temperature.  相似文献   

2.
Adenylates (ATP, ADP, and AMP) may play a central role in the regulation of the O2-limited C and N metabolism of soybean nodules. To be able to interpret measurements of adenylate levels in whole nodules and to appreciate the significance of observed changes in adenylates associated with changes in O2-limited metabolism, methods were developed for measuring in vivo levels of adenylate pools in the cortex, plant central zone, and bacteroid fractions of soybean (Glycine max L. Merr cv Maple Arrow x Bradyrhizobium japonicum strain USDA 16) nodules. Intact nodulated roots were either frozen in situ by flushing with prechilled Freon-113(-156[deg]C) or by rapidly (<1 s) uprooting plants and plunging them into liquid N2. The adenylate energy charge (AEC = [ATP + 0.5 x ADP]/[ATP + ADP + AMP]) of whole-nodule tissue (0.65 [plus or minus] 0.01, n = 4) was low compared to that of subtending roots (0.80 [plus or minus] 0.03, n = 4), a finding indicative of hypoxic metabolism in nodules. The cortex and central zone tissues were dissected apart in lyophilized nodules, and AEC values were 0.84 [plus or minus] 0.04 and 0.61 [plus or minus] 0.03, respectively. Although the total adenylate pool in the lyophilized nodules was only 41% of that measured in hydrated tissues, the AEC values were similar, and the lyophilized nodules were assumed to provide useful material for assessing adenylate distribution. The nodule cortex contained 4.4% of whole-nodule adenylates, with 95.6% being located in the central zone. Aqueous fractionation of bacteroids from the plant fraction of whole nodules and the use of marker enzymes or compounds to correct for recovery of bacteroids and cross-contamination of the bacteroid and plant fractions resulted in estimates that 36.2% of the total adenylate pool was in bacteroids, and 59.4% was in the plant fraction of the central zone. These are the first quantitative assessments of adenylate distribution in the plant and bacteroid fractions of legume nodules. These estimates were combined with theoretical calculations of rates of ATP consumption in the cortex (9.5 nmol g-1 fresh weight of nodule s-1), plant central zone (38 nmol g-1 fresh weight of nodule s-1), and bacteroids (62 nmol g-1 fresh weight of nodule s-1) of soybean nodules to estimate the time constants for turnover of the total adenylate pool and the ATP pool within each nodule fraction. The low values for time constant (1.6-5.8 s for total adenylate, 0.9-2.5 s for ATP only) in each fraction reflect the high metabolic activity of soybean nodules and provide a background for further studies of the role of adenylates in O2-limited nodule metabolism.  相似文献   

3.
Although infected cell O2 concentration (Oi) is known to limit respiration and nitrogenase activity in legume nodules, techniques have not been available to measure both processes simultaneously in an individual legume nodule. Consequently, details of the relationship between nitrogenase activity and Oi are not fully appreciated. For the present study, a probe was designed that allowed open circuit measurements of H2 evolution (nitrogenase activity) and CO2 evolution (respiration rate) in a single attached soybean nodule while simultaneously monitoring fractional oxygenation of leghemoglobin (and thereby Oi) with a nodule oximeter. Compared to measurements of whole nodulated roots, use of the probe led to inhibition of nitrogenase activity in the single nodules. During oximetry measurements, total nitrogenase activity (TNA; peak H2 evolution in Ar/O2) in the single nodules was 16% of that in whole nodulated roots and 48% of nodulated root activity when Oi was not being measured simultaneously. This inhibition did not affect the nodules' ability to regulate Oi, because exposure to Ar/O2 (80:20, v/v) caused nitrogenase activity and respiration rate to decline, and this decline was linearly correlated with a concurrent decrease in Oi. When the nodules were subsequently exposed to a linear increase in external pO2 from 20 to 100% O2 at 2.7% O2/min, fractional leghemoglobin oxygenation first increased gradually and then more rapidly, reaching saturation at a pO2 between 76 and 100% O2. Plots of nitrogenase activity and respiration rate against Oi showed that rates increased with Oi up to a value of 57 nM, with half-maximal rates being attained at Oi values between 10 and 14 nM O2. The maximum nitrogenase activity achieved during the increase in pO2 (potential nitrogenase activity) was 30 to 57% of that measured in intact nodulated roots, showing that O2 limitation of nitrogenase activity could account for a significant proportion of the inhibition of TNA associated with the use of the probe. However, some factor(s) in addition to O2 must have limited the activity of single nodules at both subsaturating and saturating Oi. At Oi values greater than about 57 nM, nitrogenase activity and nodule respiration were inhibited, but, because this inhibition has been shown previously to be readily reversible when the Oi was lowered, it was not attributed to direct O2 inactivation of the nitrogenase protein. These results indicate that maximum nitrogenase activity in legume nodules is supported by a narrow range of Oi values. Possible biochemical mechanisms are discussed for both O2 limitation of nitrogenase activity at low Oi and inhibition of nitrogenase activity at high Oi.  相似文献   

4.
Nodulated soybeans (Glycine max L. Merr, cv. Maple Arrow) were exposed to various physiological and environmental treatments to determine the relationship between nodule adenylate pools and the degree of O2 limitation of nitrogenase. Adenylate energy charge (AEC = [ATP + 0.5 ADP]/[ATP + ADP + AMP]) and ATP/ADP ratios declined under conditions of decreased (10%) external pO2 but increased in nodules exposed to elevated (30%) external pO2. Nitrogenase activity was inhibited by both pO2 treatments, but recovered towards initial levels within 45 min. AEC also returned to initial levels during this period. To account for these and related data in the literature, it was hypothesized that 1) legume nodules regulate infected cell O2 concentration (Oi) to maintain adenylate pools at levels which limit respiratory metabolism: 2) treatments which decrease Oi alter the adenylate pools and further limit nodule metabolism; 3) treatments which increase Oi to levels in excess of a narrow range alter the adenylate pools and activate biochemical pathways which are not conducive to nitrogenase activity. In a preliminary test of these hypotheses, changes in AEC and ATP/ADP ratio were studied in nodules in which nitrogenase activity was inhibited by stem girdling, nitrate fertilization and exposure to an Ar:O2 atmosphere. All three treatments caused an increased O2 limitation of nodule respiration and nitrogenase activity. However, decreases in AEC were observed only in the stem girdling and nitrate fertilization treatment: Ar:O2 exposure had no effect on whole nodule AEC. While this result challenged the hypotheses suggesting a central role for adenylates in the regulation of O2-limited metabolism, it was noted that the Ar:O2 treatment would differ from the other treatments in that it would have a specific effect on the ATP demands for NH3 assimilation in the plant fraction. Since AEC and ATP/ADP ratio would be affected by both the rate of ATP synthesis (potentially an O2-limited process) and the demand for ATP, changes in these parameters in the whole nodule may not be a reliable indicator of adenylate-mediated O2 limitation. Futher studies are needed to examine in vivo changes in adenylate pools in the plant and bacteroid fractions in nodules which vary in their degree of O2-limited metabolism.  相似文献   

5.
The effects of NH4NO3 on the development of root nodules of Pisum sativum after infection with Rhizobium leguminosarum (strain PRE) and on the nitrogenase activity of the bacteroids in the nodule tissue were studied. The addition of NH4NO3 decreased the nitrogenase activity measured on intact nodules. This reduction of nitrogen fixation did not result from a reduced number of bacteroids or a decreased amount of bacteroid proteins per gram of nodule. The synthesis of nitrogenase, measured as the relative amount of incorporation of [35S]sulfate into the components I and II of nitrogenase was similarly not affected. The addition of NH4NO3 decreased the amount of leghemoglobin in the nodules and there was a quantitative correlation between the leghemoglobin content and the nitrogen-fixing capacity of the nodules. The conclusion is that the decrease of nitrogen-fixing capacity is caused by a decrease of the leghemoglobin content of the root nodules and not by repression of the nitrogenase synthesis.  相似文献   

6.
Helguera G  Beauge L 《Plant physiology》1997,115(4):1397-1403
ATP-ADP exchange was estimated in the presence of plasma membrane H+-ATPase of oat (Avena sativa) roots partially purified with Triton X-100 by measuring [14C]ATP formation from [14C]ADP. Most studies were done at 0[deg]C. At pH 6.0 the exchange showed: (a) Mg2+ requirement with a biphasic response giving maximal activity at 152 [mu]M and (b) insensitivity to ionic strength, [Na+], and [K+]. ATP and ADP dependence were analyzed with a model in which nucleotide-enzyme interactions are at rapid-random equilibrium, whereas E1ATP [left right arrow] E1P-ADP transitions occur in steady state. The results indicated competition between ADP and ATP for the catalytic site, whereas ATP interaction with the ADP site was extremely weak. At 0[deg]C the exchange showed a 3-fold pH increase, from pH 5.5 to 9.0. At an alkaline pH the reaction was not affected by sodium azide and carbonyl cyanide p-trifluometoxyphenyl-hydrazone, had a biphasic response to Mg2+ (maximal at 513 [mu]m), and was insensitive to ionic strength. At 20[deg]C ATP-ADP exchange was pH insensitive. At both temperatures ATP hydrolysis displayed a bell-shaped response, with a maximum around pH 6.0 to 6.5. Because no adenylate kinase activity was detected under any condition, these results demonstrate the existence of an ATP-ADP exchange reaction catalyzed by the plant H+-ATPase.  相似文献   

7.
Physiological regulation of nodule gas permeability has a central role in the response of legumes to such diverse factors as drought, defoliation, and soil nitrate. A new method for quantifying nodule respiration and O2 permeability, based on noninvasive spectrophotometry of leghemoglobin, was evaluated using intact, attached nodules of Lotus corniculatus. First, the relationship between nodule respiration (O2 consumption) rate and internal O2 concentration was determined from the rate of decrease in fractional oxygenation of leghemoglobin (FOL) under N2. The rate of increase of FOL under 100% O2 was then used to calculate nodule O2 permeability, after correcting for respiration. Inactivation of nitrogenase by exposure to 100% O2 for 15 minutes led to decreases in both permeability and O2-saturated respiration (Vmax), but the brief (<15 seconds) exposures to 100% O2 required by the assay itself had little effect on either parameter. A gradual increase in external O2 concentration from 20 to 40% resulted in a reversible decrease in permeability, but no change in Vmax. The new method is likely to be useful for research on nodule physiology and might also be applicable to agronomic research and crop improvement programs.  相似文献   

8.
Summary Cold acclimation in fish is associated with an elevation in metabolic rate. The present study investigates the role of adenine nucleotides and related compounds in metabolic regulation following temperature acclimation. Brook trout (Salvelinus fontinalis) were acclimated for 10 weeks to either +4°C or +24°C. Both groups of fish were exercised at 2.5 body lengths s–1 for 2 weeks prior to sacrifice in order to control for differences in spontaneous activity.Concentrations of ATP, ADP, AMP, P i and PC were approximately 2-fold higher in white than red muscles. Temperature acclimation had little effect on total adenine nucleotide concentration in either muscle type. In white fibres acclimation to 4°C results in a 39% increase in [ADP] and [AMP], a 35% decrease in [PC] (phosphorylcreatine), and no significant change in [P i ]. In contrast temperature has little effect on concentrations of these compounds in red muscle.Parameters of metabolic control — adenylate energy charge ([ATP]+0.5 [ADP]/[ATP]+[ADP]+[AMP]), phosphorylation state ([ATP]/[ADP]·[P i ]), and the ratios [ATP][ADP] and [ATP][AMP] — were significantly lower in cold- than warm-acclimated white muscle. The observed changes in phosphorylation state and [ATP][AMP] are consistent with an increase in mitochondrial respiration and glycolysis, respectively.In conclusion, changes in metabolites may be an important factor in producing an enhanced metabolic rate in cold-acclimated fish.  相似文献   

9.
Sensitive fluorometric assay for leghemoglobin   总被引:4,自引:0,他引:4  
A sensitive spectrofluorometric assay for leghemoglobin is based upon the action of hot saturated oxalic acid on heme proteins. The assay will detect 200 ng of leghemoglobin per milliliter and is specific enough to permit estimation in single nodules or extracts of whole roots. The leghemoglobin concentration measured fluorometrically shows a correlation with nitrogenase [C2H2] activity, even during nodule senescence, when standard colorimetric assays may overestimate leghemoglobin.  相似文献   

10.
The effects of NH4NO3 on the development of root nodules of Pisum sativum after infection with Rhizobium leguminosarum (strain PRE) and on the nitrogenase activity of the bacteriods in the nodule tissue were studied. The addition of NH4NO3 decreased the nitrogenase activity measured on intact nodules. This reduction of nitrogen fixation did not result from a reduced number of bacteroids or a decreased amount of bacteroid proteins per gram of nodule. The synthesis of nitrogenase, measured as the relative amount of incorporation of [35S]sulfate into the components I and II of nitrogenase was similarly not affected.The addition of NH4NO3 decreased the amount of leghemoglobin in the nodules and there was a quantitative correlation between the leghemoglobin content and the nitrogen-fixing capacity of the nodules. The conclusion is that the decrease of nitrogen-fixing capacity is caused by a decrease of the leghemoglobin content of the root nodules and not by repression of the nitrogenase synthesis.  相似文献   

11.
In legume nodules, treatments such as detopping or nitrate fertilization inhibit nodule metabolism and N2 fixation by decreasing the nodule's permeability to O2 diffusion, thereby decreasing the infected cell O2 concentration (Oi) and increasing the degree to which nodule metabolism is limited by O2 availability. In the present study we used nodule oximetry to assess and compare the role of O2 limitation in soybean (Glycine max L. Merr) nodules inhibited by either drought or detopping. Compared to detopping, drought caused only minor decreases in Oi, and when the external O2 concentration was increased to raise Oi, the infected cell respiration rate in the drought-stressed plants was not stimulated as much as it was in the nodules of the detopped plants. Unlike those in detopped plants, nodules exposed to moderate drought stress displayed an O2-sufficient respiration rate that was significantly lower than that in control nodules. Despite possible side effects of oximetry in altering nodule metabolism, these results provided direct evidence that, compared to detopping, O2 limitation plays a minor role in the inhibition of nodule metabolism during drought stress and changes in nodule permeability are the effect, not the cause, of a drought-induced inhibition of nodule metabolism and the O2-suffiecient rate of respiration.  相似文献   

12.
Plasma membrane vesicles derived from corn (Zea mays L.) roots retain a membrane-bound H+-ATPase that is able to form a H+ gradient across the vesicle membranes. The activity of this ATPase is enhanced 2- to 3-fold when Triton X-100 or lysophosphatidylcholine is added to the medium at a protein:detergent ratio of 2:1 (w/w). In the absence of detergent, the ATPase exhibits only one Km for ATP (0.1-0.2 mM), which is the same as for the pumping of H+. After the addition of either Triton X-100 or lysophosphatidylcholine, two Km's for ATP are detected, one in the range of 1 to 3 [mu]M and a second in the range of 0.1 to 0.2 mM. The Vmax of the second Km for ATP increases as the temperature of the assay medium is raised from 15[deg]C to 38[deg]C. The Arrhenius plot reveals a single break at 30[deg]C, both in the absence and in the presence of detergents. In the presence of Triton X-100 the H+-ATPase catalyzes the cleavage of glucose-6-phosphate when both hexokinase and ADP are included in the assay medium. There is no measurable cleavage when the apparent affinity for ATP of the H+-ATPase is not enhanced by Triton X-100 or when 1 mM glucose is included in the assay medium. These data indicate that when the high-affinity Km for ATP is unmasked with the use of detergent, the ATPase can use glucose-6-phosphate and hexokinase as an ATP-regenerating system.  相似文献   

13.
A method is described for isolating mitochondria from nodules of cowpea (Vigna unguiculata [L.] Walp.) under completely anaerobic conditions. The mitochondria were immediately active when incubated aerobically with substrates, and their respiration rates were higher than mitochondria prepared in air. The mitochondria lacked fumarate reductase and were not inhibited by 5% CO2. When incubated under microaerobic conditions, their respiration could be measured by leghemoglobin spectroscopy. Microaerobic respiration was inhibited approximately 50% by 1 millimolar malonate, and was completely inhibited by cyanide. O2 uptake and the ATP/O ratio declined under microaerobic conditions, and therefore ATP production may be low in the environment of infected nodule cells.  相似文献   

14.
Zeng S  Tjepkema JD 《Plant physiology》1995,107(4):1269-1275
Rates of C2H2 reduction and CO2 evolution by nodules were measured in a flowthrough system using intact plants of Myrica gale L. Both activities increased linearly with increasing partial pressure of O2 (pO2) up to 18 kPa. The linear relationship between CO2 evolution and pO2 at pO2 values between 6 and 18 kPa suggests that the diffusion barrier has a constant resistance. The lack of a variable resistance was further supported by sustained increases and decreases in nodule activities in response to changes in pO2 in the range of 6 to 20 kPa O2. When pO2 was increased above 20 kPa, C2H2 reduction and CO2 evolution continually declined with time. These results confirm that the diffusion barrier in nodules of M. gale is not variable in response to changes in pO2. The effect of temperature was examined at 8 and 20 kPa O2. Rates of C2H2 reduction and CO2 evolution increased with increasing temperature from 10 to 30[deg]C at both pO2 values. These results indicate that the diffusion resistance of the barrier changes as temperature changes, with the resistance decreasing as temperature increases.  相似文献   

15.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

16.
Mathematical models were developed to test the likelihood that large cytosolic adenylate concentration gradients exist across the bacteria-infected cells of legume nodules. Previous studies hypothesized that this may be the case to account for the unusually low adenylate energy charge (AEC; 0.65) measured in the plant fraction of metabolically active nodules (M.M. Kuzma, H. Winter, P. Storer, I. Oresnik, C.A. Atkins, D.B. Layzell [1999] Plant Physiol 119: 399-407). Simulations coupled leghemoglobin-facilitated O(2) diffusion into the infected cell, through bacteroid nitrogenase activity, with the ATP demand for transport and ammonia assimilation in the plant fraction of ureide- and amide-producing nodules. Although large cytosolic adenylate gradients were predicted to exist in both nodule types, amide nodules were predicted to have steeper AEC gradients (0.82-0.52) than ureide nodules (0.82-0.61). The differences were attributed to an additional ATP demand for Asn synthesis in the amide nodule. Simulations for nodules transferred to an Ar:O(2) atmosphere predicted a major reduction in the magnitude of adenylate gradients and an increase in the AEC of the plant fraction. Results were consistent with a number of experimental studies and were used to propose an experimental test of the models.  相似文献   

17.
The effects of lowered O2 tension on insulin secretion and changes in cellular energy parameters were investigated in isolated rat pancreatic islets perifused with buffers equilibrated with 21, 9, 5, and 1% oxygen and containing 5 mM glucose. Decreasing the external [O2] reduced the amount of insulin released in response to 16 mM glucose, 20 mM alpha-ketoisocaproic acid, and 40 mM KCl. Secretion elicited by high glucose or KCl had declined significantly at 9% oxygen, whereas that caused by alpha-ketoisocaproic acid became inhibited below 5% O2. Lowering the oxygen tension also decreased the ability of islets to respond with a rise in [ATP]/[ADP] upon stimulation with metabolic secretagogues. This reduction in the evoked increase in the nucleotide ratios paralleled the inhibition of stimulated insulin secretion. Addition of 2 mM amytal markedly decreased the islet energy level and eliminated the secretory response to 16 mM glucose. The results suggest that enhancement of B-cell energy production and a consequent rise in [ATP] (or [ATP]/[ADP]) are a necessary event for the hormone release elicited by high glucose and alpha-ketoisocaproic acid. A decrease in temperature inhibited insulin secretion with all three secretagogues tested. The energies of activation were similar for high glucose and KCl-induced secretion, about 20 kcal/mol, but were higher for alpha-ketoisocaproic acid, about 35 kcal/mol. At 28 degrees C, the [ATP]/[ADP] was larger than that at 38 degrees C (8 versus 5) and was not increased further upon addition of 16 mM glucose. It is suggested that a decrease in the rate of energy production at lowered temperatures may contribute to the inhibition of insulin release caused by metabolic secretagogues.  相似文献   

18.
Nicotinate has been postulated to interfere with the binding of O2 to ferrous leghemoglobin in soybean (Glycine max) root nodules. For such a function, the levels of nicotinate in nodules must be sufficiently high to bind a significant amount of leghemoglobin. We have measured levels of nicotinate, nicotinamide, and leghemoglobin in soybean nodules from plants 34 to 73 days after planting in a glasshouse. On a per gram nodule fresh weight basis, levels between 10.4 and 21 nanomoles for nicotinate, 19.2 and 37.8 nanomoles for nicotinamide, and 170 to 280 nanomoles for leghemoglobin were measured. Even if all the nicotinate were bound to ferrous leghemoglobin, only 11% or less of the total leghemoglobin would be unavailable for binding O2. Using the measured levels of nicotinate and a pH of 6.8 in the cytosol of presenescent soybean nodules, we estimate that the proportion of ferrous leghemoglobin bound to nicotinate in such nodules would be less than 1%. These levels of nicotinate are too low to interfere with the reaction between ferrous leghemoglobin and O2 in soybean root nodules.  相似文献   

19.
G Brandolin  I Marty  P V Vignais 《Biochemistry》1990,29(41):9720-9727
A rapid filtration technique has been used to measure at room temperature the kinetics of ADP and ATP transport in rat heart mitochondria in the millisecond time range. Transport was stopped by cessation of the nucleotide supply, without the use of a transport inhibitor, thus avoiding any quenching delay. The mitochondria were preincubated for 30 s either in isotonic KCl containing succinate, MgCl2, and Pi (medium P) or in isotonic KCl supplemented only with EDTA and Tris (medium K); they were referred to as energized and resting mitochondria, respectively. The kinetics of [14C]ADP transport in energized mitochondria were apparently monophasic. The plateau value for [14C]ADP uptake reached 4-5 nmol of nucleotide.(mg of protein)-1. Vmax values for [14C]ADP transport of 400-450 nmol exchanged.min-1.(mg of protein)-1 with Km values of the order of 13-15 microM were calculated, consistent with rates of phosphorylation in the presence of succinate of 320-400 nmol of ATP formed.min-1.(mg of protein)-1. The rate of transport of [14C]ATP in energized mitochondria was 5-10 times lower than that of [14C]ADP. Upon uncoupling, the rate of [14C]ATP uptake was enhanced, and that of [14C]ADP uptake was decreased. However, the two rates did not equalize, indicating that transport was not exclusively electrogenic. Transport of [14C]ADP and [14C]ATP by resting mitochondria followed biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In C6 astrocytoma cells respiring with glucose, 40% of the total production of ATP was provided by glycolysis. Anaerobiosis in the presence of glucose, reduced ATP synthesis by approximately 50%, increased lactate production by 30% and caused a 3-fold decline in [creatine phosphate]/[creatine] and consequently [ATP]free[ADP]free. There was no change in [K+]i which suggests that glycolytic production of ATP provides sufficient energy to ensure normal operation of the Na+/K+ pump. In the absence of glucose, [creatine phosphate]/[creatine] declined to less than 0.1 in 15 min and there was a loss of K+ from cells. A comparison of delta GATP and delta GNa,K under aerobic conditions with and without glucose, showed the former to be larger by 1 - 2 kcal. However, under O2-limited, glucose-restricted conditions delta GATP fell below the level necessary to maintain operation of the Na+/K+ pump and led to a collapse in ionic gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号