共查询到20条相似文献,搜索用时 15 毫秒
1.
Soini E Meltola NJ Soini AE Soukka J Soini JT Hänninen PE 《Biochemical Society transactions》2000,28(2):70-74
Two-photon fluorescence excitation has been found to be a very powerful method for enhancing the sensitivity and resolution in far-field light microscopy. Two-photon fluorescence excitation also provides a substantially background-free detection on the single-molecule level. It allows direct monitoring of formation of labelled biomolecule complexes in solution. Two-photon excitation is created when, by focusing an intensive light source, the density of photons per unit volume and per unit time becomes high enough for two photons to be absorbed into the same chromophore. In this case, the absorbed energy is the sum of the energies of the two photons. In two-photon excitation, dye molecules are excited only when both photons are absorbed simultaneously. The probability of absorption of two photons is equal to the product of probability distributions of absorption of the single photons. The emission of two photons is thus a quadratic process with respect to illumination intensity. Thus in two-photon excitation, only the fluorescence that is formed in the clearly restricted three-dimensional vicinity of the focal point is excited. We have developed an assay concept that is able to distinguish optically between the signal emitted from a microparticle in the focal point of the laser beam, and the signal emitted from the surrounding free labelled reagent. Moreover, the free labels outside the focal volume do not contribute any significant signal. This means that the assay is separation-free. The method based on two-photon fluorescence excitation makes possible fast single-step and separation-free immunoassays, for example, for whole blood samples. Since the method allows a separation-free assay in very small volumes, the method is very useful for high-throughput screening assays. Consequently we believe that two-photon fluorescence excitation will make a remarkable impact as a research tool and a routine method in many fields of analysis. 相似文献
2.
3.
Asialoglycoprotein receptor (ASGP-R) has been actively investigated for targeted delivery of therapeutic agents into hepatocytes because this receptor is selectively and highly expressed in liver and has a high internalization rate. Synthetic cluster glycopeptides (e.g., triGalNAc) bind with high affinity to ASGP-R and, when conjugated to a therapeutic agent, can drive receptor-mediated uptake in liver. We developed a novel fluorescent polarization (FP) ASGP-R binding assay to determine the binding affinities of ASGP-R-targeted molecules. The assay was performed in 96-well microplates using membrane preparations from rat liver as a source of ASGP-R and Cy5 fluorophore-labeled triGalNAc synthetic ligand as a tracer. This high-throughput homogeneous assay demonstrates advantages over existing multistep methods in that it minimizes both time and resources spent in determining binding affinities to ASGP-R. At the optimized conditions, a Z' factor of 0.73 was achieved in a 96-well format. 相似文献
4.
Nosjean O Souchaud S Deniau C Geneste O Cauquil N Boutin JA 《Journal of biomolecular screening》2006,11(8):949-958
Fluorescence polarization is a screening technology that is radioactivity free, homogeneous, and ratiometric. The signal measured with this technology is a weighted value of free and bound ligand. As a consequence, saturation curves are accessible only after calculation of the corresponding concentrations of free and bound ligand. To make this technology more accessible to assay development, the authors propose a simple mathematical model that predicts fluorescence polarization values from ligand and receptor total concentrations, depending on the corresponding dissociation constant. This model was validated using data of Bodipy-NDP-alphaMSH binding to MC(5), obtained after either ligand saturation of a receptor preparation or, conversely, receptor saturation of a ligand solution. These experimental data were also used to calculate the actual concentration of free and bound ligand and receptor and to obtain pharmacological constants by Scatchard analysis. A general method is proposed, which facilitates the design of fluorescence polarization binding assays by relying on the representation of theoretical polarization values. This approach is illustrated by the application to 2 systems of very different affinities. 相似文献
5.
6.
N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. 相似文献
7.
Duveneck GL Bopp MA Ehrat M Balet LP Haiml M Keller U Marowsky G Soria S 《Biosensors & bioelectronics》2003,18(5-6):503-510
In this paper, we report the first successful demonstration, to our knowledge, of two-photon fluorescence excitation (TPFE) using planar thin-film waveguide structures of macroscopic excitation dimensions (square millimeters to square centimeters in size). The high intensity of excitation light required for TPFE is available not only at a single focus point but along the whole trace of the beam guided in the waveguide structure. Line profiles of the fluorescence excited by TPFE show excellent correlation with the geometry of the launched laser beams. A clear second-order dependence of the fluorescence intensity on the excitation intensity confirms the two-photon character of fluorescence generation. Spectra of the emission generated by one-photon excitation and by two-photon excitation show only minor differences. 相似文献
8.
Traditional methods that follow receptor ligand interactions are competitive assays in which the test compound displaces a radiolabeled molecule. These assays require either a time-consuming step for separation of free ligands from bound ligands or immobilization of receptors and the scintillant on a solid-phase support. In this report, we describe the development of a homogeneous binding assay for a G protein-coupled receptor in the fluorescence polarization format. This homogeneous fluorescence polarization binding assay format is superior to the traditional binding methods because no radioisotope, separation step, or solid-phase support is required. The elimination of the separation step enhances detection of low-affinity ligands and enables a real-time, continuous readout of the binding activity in a high throughput 384-well microplate format. 相似文献
9.
Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes 总被引:3,自引:1,他引:3 下载免费PDF全文
Two-photon excitation microscopy shows coexisting regions of different generalized polarization (GP) in phospholipid vesicles, in red blood cells, in a renal tubular cell line, and in purified renal brushborder and basolateral membranes labeled with the fluorescent probe laurdan. The GP function measures the relative water content of the membrane. In the present study we discuss images obtained with polarized laser excitation, which selects different molecular orientations of the lipid bilayer corresponding to different spatial regions. The GP distribution in the gel-phase vesicles is relatively narrow, whereas the GP distribution in the liquid-crystalline phase vesicles (DOPC and DLPC) is broad. Analysis of images obtained with polarized excitation of the liquid-crystalline phase vesicles leads to the conclusion that coexisting regions of different GP must have dimensions smaller than the microscope resolution (approximately 200 nm radially and 600 nm axially). Vesicles of an equimolar mixture of DOPC and DPPC show coexisting rigid and fluid domains (high GP and low GP), but the rigid domains, which are preferentially excited by polarized light, have GP values lower than the pure gel-phase domains. Cholesterol strongly modifies the domain morphology. In the presence of 30 mol% cholesterol, the broad GP distribution of the DOPC/DPPC equimolar sample becomes narrower. The sample is still very heterogeneous, as demonstrated by the separations of GP disjoined regions, which are the result of photoselection of regions of different lipid orientation. In intact red blood cells, microscopic regions of different GP can be resolved, whereas in the renal cells GP domains have dimensions smaller than the microscope resolution. Preparations of renal apical brush border membranes and basolateral membranes show well-resolved GP domains, which may result from a different local orientation, or the domains may reflect a real heterogeneity of these membranes. 相似文献
10.
A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots 下载免费PDF全文
Two-photon excitation fluorescence cross-correlation spectroscopy (TPE-XCS) is a very suitable method for studying interactions of two distinctly labeled fluorescent molecules. As such, it lends itself nicely to the study of ligand-receptor interactions. By labeling the ligand with one color of fluorescent dye and the receptor with another, it is possible to directly monitor ligand binding rather than inferring binding by monitoring downstream effects. One challenge of the TPE-XCS approach is that of separating the signal due to the receptor from that of the ligand. Using standard organic fluorescent labels there is almost inevitably spectral cross talk between the detection channels, which must be accounted for in TPE-XCS data analysis. However, using quantum dots as labels for both ligand and receptor this limitation can be alleviated, because of the dot's narrower emission spectra. Using solely quantum dots as fluorescent labels is a novel approach to TPE-XCS, which may be generalizable to many pairs of interacting biomolecules after the proof of principle and the assessment of limitations presented here. Moreover, it is essential that relevant pharmacological parameters such as the equilibrium dissociation constant, K(d), can be easily extracted from the XCS data with minimal processing. Herein, we present a modified expression for fractional occupancy based on the auto- and cross-correlation decays obtained from a well-defined ligand-receptor system. Nanocrystalline semiconductor quantum dots functionalized with biotin (lambda(em) = 605 nm) and streptavidin (lambda(em) = 525 nm) were used for which an average K(d) value of 0.30 +/- 0.04 x 10(-9) M was obtained (cf. native system approximately 10(-15)). Additionally, the off-rate coefficient (k(off)) for dissociation of the two quantum dots was determined as 5 x 10(-5) s(-1). This off-rate is slightly larger than for native biotin-streptavidin (5 x 10(-6) s(-1)); the bulky nature of the quantum dots and restricted motion/orientation of functionalized dots in solution can account for differences in the streptavidin-biotin mediated dot-dot binding compared with those for native streptavidin-biotin. 相似文献
11.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of the 3'-ester bond of cyclic AMP (cAMP) and cyclic GMP (cGMP), important second messengers in the transduction of a variety of extracellular signals. There is growing interest in the study of PDEs as drug targets for novel therapeutics. We describe the development of a homogeneous fluorescence polarization assay for PDEs based on the strong binding of PDE reaction products (i.e., AMP or GMP) onto modified nanoparticles through interactions with immobilized trivalent metal cations. This assay technology (IMAP) is applicable to both cAMP- and cGMP-specific PDEs. Results of the assay in 384- and 1536-well microplates are presented. 相似文献
12.
Universal SNP genotyping assay with fluorescence polarization detection 总被引:42,自引:0,他引:42
The degree of fluorescence polarization (FP) of a fluorescent molecule is a reflection of its molecular weight (Mr). FP is therefore a useful detection methodfor homogeneous assays in which the starting reagents and products differ significantly in Mr. We have previously shown that FP is a good detection method for the single-base extension and the 5'-nuclease assays. In this report, we describe a universal, optimized single-base extension assay for genotyping single nucleotide polymorphisms (SNPs). This assay, which we named the template-directed dye-terminator incorporation assay with fluorescence polarization detection (FP-TDI), uses four spectrally distinct dye terminators to achieve universal assay conditions. Even without optimization, approximately 70% of all SNP markers tested yielded robust assays. The addition of an E. coli ssDNA-binding protein just before the FP reading significantly increased FP values of the products and brought the success rate of FP-TDI assays up to 90%. Increasing the amount of dye terminators and reducing the number of thermal cycles in the single-base extension step of the assay increased the separation of the FP values benveen the products corresponding to different genotypes and improved the success rate of the assay to 100%. In this study the genomic DNA samples of 90 individuals were typed for a total of 38 FP-TDI assays (using both the sense and antisense TDI primers for 19 SNP markers). With the previously described modifications, the FP-TDI assay gave unambiguous genotyping data for all the samples tested in the 38 FP-TDI assays. When the genotypes determined by the FP-TDI and 5'-nuclease assays were compared, they were in 100% concordance for all experiments (a total of 3420 genotypes). The four-dye-terminator master mixture described here can be used for assaying any SNP marker and greatly simplifies the SNP genotyping assay design. 相似文献
13.
Jones JW Greene TA Grygon CA Doranz BJ Brown MP 《Journal of biomolecular screening》2008,13(5):424-429
A recently developed nanotechnology, the Integral Molecular lipoparticle, provides an essentially soluble cell-free system in which G-protein-coupled receptors (GPCRs) in their native conformations are concentrated within virus-like particles. As a result, the lipoparticle provides a means to overcome 2 common obstacles to the development of homogeneous, nonradioactive GPCR ligand-binding assays: membrane protein solubilization and low receptor density. The work reported here describes the first application of this nanotechnology to a fluorescence polarization (FP) molecular binding assay format. The GPCR chosen for these studies was the well-studied chemokine receptor CXCR4 for which a peptide ligand (T-22) has been previously characterized. The EC50 determined for the CXCR4-T-22 peptide interaction via FP with CXCR4 lipoparticles (15 nM) is consistent with the IC50 determined for the unlabeled T-22 peptide via competitive binding (59 nM). 相似文献
14.
Nikolovska-Coleska Z Wang R Fang X Pan H Tomita Y Li P Roller PP Krajewski K Saito NG Stuckey JA Wang S 《Analytical biochemistry》2004,332(2):261-273
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain. 相似文献
15.
Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild-type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate "false" positives due to modification of the active site Cys that destroy the phosphatase activity. 相似文献
16.
Shoya Yamada Fuminori Ohsawa Shuji Fujii Ryosuke Shinozaki Makoto Makishima Hirotaka Naitou Shuichi Enomoto Akihiro Tai Hiroki Kakuta 《Bioorganic & medicinal chemistry letters》2010,20(17):5143-5146
Retinoid X receptor (RXR) agonists are candidate agents for the treatment of metabolic syndrome and type 2 diabetes via activation of peroxisome proliferator-activated receptor (PPAR)/RXR or liver X receptor (LXR)/RXR-heterodimers, which control lipid and glucose metabolism. Reporter gene assays or binding assays with radiolabeled compounds are available for RXR ligand screening, but are unsuitable for high-throughput screening. Therefore, as a first step towards stabilizing a fluorescence polarization (FP) assay system for high-throughput RXR ligand screening, we synthesized fluorescent RXR ligands by modification of the lipophilic domain of RXR ligands with a carbostyril fluorophore, and selected the fluorescent RXR agonist 6-[ethyl(1-isobutyl-2-oxo-4-trifluoromethyl-1,2-dihydroquinolin-7-yl)amino]nicotinic acid 8d for further characterization. Compound 8d showed FP in the presence of RXR and the FP was decreased in the presence of the RXR agonist LGD1069 (2). This compound should be a lead compound for use in high-throughput assay systems for screening RXR ligands. 相似文献
17.
Peptidyl-tRNA hydrolase (Pth) activity ensures the rapid recycling of peptidyl-tRNAs that result from premature termination of translation. Historically, the hydrolyzing activity of Pth has been assayed with radiolabeled N-blocked aminoacyl-tRNAs in assay systems that require the separation of radiolabeled amino acid from the N-blocked aminoacyl-tRNA complex. In the present study, we describe the development of a kinetic fluorescence polarization (FP) assay that enables measurements of Pth activity without the need to separate bound and free tracer. The hydrolyzing activity of Pth was determined by measuring the change in polarization values that resulted from the cleavage of a fluorescently labeled substrate (BODIPY-Lys-tRNA(Lys)). The data were analyzed using an equation describing first-order dissociation and the results showed that the experimental data correlated well with the theoretical curve. A runs test of the residuals showed that the experimental data did not significantly differ from the first-order model. The assay is adaptable to a multiwell format and is sensitive enough to detect Pth-like activity in bacterial cell lysate. The Pth FP assay provides a homogeneous and kinetic format for measuring Pth activity in vitro. 相似文献
18.
Howes R Barril X Dymock BW Grant K Northfield CJ Robertson AG Surgenor A Wayne J Wright L James K Matthews T Cheung KM McDonald E Workman P Drysdale MJ 《Analytical biochemistry》2006,350(2):202-213
Hsp90 encodes a ubiquitous molecular chaperone protein conserved among species which acts on multiple substrates, many of which are important cell-signaling proteins. Inhibition of Hsp90 function has been promoted as a mechanism to degrade client proteins involved in tumorigenesis and disease progression. Several assays to monitor inhibition of Hsp90 function currently exist but are limited in their use for a drug discovery campaign. Using data from the crystal structure of an initial hit compound, we have developed a fluorescence polarization assay to monitor binding of compounds to the ATP-binding site of Hsp90. This assay is very robust (Z' > 0.9) and can detect affinity of compounds with IC50s to 40 nM. We have used this assay in conjunction with cocrystal structures of small molecules to drive a structure-based design program aimed at the discovery and optimization of a novel class of potent Hsp90 inhibitors. 相似文献
19.
Du Y Moulick K Rodina A Aguirre J Felts S Dingledine R Fu H Chiosis G 《Journal of biomolecular screening》2007,12(7):915-924
Heat shock protein 90 (Hsp90) is a molecular chaperone that has emerged as an important target in cancer and several other diseases, such as neurodegenerative diseases, nerve injuries, inflammation, and infection. Discovery of novel agents that inhibit Hsp90 and have druglike properties is therefore a major focus in several academic and industrial laboratories. In this study, the authors describe the development and optimization in a 384-well format of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization, which measures competitive binding of red-shifted fluorescently labeled geldanamycin (GM-cy3B) to Hsp90 found in the NCI-N417 small-cell lung carcinoma cells. The authors demonstrate that GMcy3B binds with high affinity and specificity to cellular Hsp90. The assay results in excellent signal-to-noise ratios (>10) and Z' values (>0.75) at tracer concentrations greater than 4 nM and 1 microg/well of total NCI-N417 protein, indicating a robust assay. It also equilibrates after 5 h of incubation at room temperature and remains stable for up to 24 h. Furthermore, it is a simple mix-and-read format that is cost-effective and uses only low amounts of fluorophore and cell lysates. A study using more than 15,000 compounds from the National Institutes of Health Molecular Libraries Screening Center Network was performed to validate its performance in a high-throughput screening format. 相似文献
20.
In this paper, we described the optimization of a generic binding assay to measure ligand-receptor interactions for peroxisome proliferator-activated receptors (PPARs). The assay is based on scintillation proximity assay, in which a protein is coated on scintillant-incorporated beads, and a radiolabeled ligand stimulates the beads to emit a signal by binding to the immobilized protein. An intrinsic binding affinity of unlabeled ligands is determined by competitive displacement of the radioligand. The protein coating and ligand binding are achieved in one step by simply mixing ligands, protein and beads in sequence. No additional steps of pre-coating and washing of beads are required. Protein is captured on beads effectively by electrostatic interactions, thus no affinity labeling of protein is required. In data analysis, ligands are grouped into two classes based on their binding affinities. For tight binding ligands, an equation is derived to accurately determine the binding affinity. Otherwise a general equation applies. This quantitative and high throughput assay provides a tool to screen a large library of molecules in search of potent ligands. 相似文献