首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to determine whether growth in the presence of bile influences the surface properties and adhesion to hydrophobic bile drain materials of Enterococcus faecalis strains expressing aggregation substance (Agg) or enterococcal surface protein (Esp), two surface proteins that are associated with infections. After growth in the presence of bile, the strains were generally more hydrophobic by water contact angles and the zeta potentials were more negative than when the strains were grown in the absence of bile. Nitrogen was found in lower surface concentrations upon growth in the presence of bile, whereas higher surface concentrations of oxygen were measured by X-ray photoelectron spectroscopy. Moreover, an up to twofold-higher number of bacteria adhered after growth in bile for E. faecalis not expressing Agg or Esp and E. faecalis with Esp on its surface. E. faecalis expressing Agg did not adhere in higher numbers after growth in bile, possibly because they mainly adhere through positive cooperativity and less through direct interactions with a substratum surface. Since adhesion of bacteria is the first step in biomaterial-centered infection, it can be concluded that growth in bile increases the virulence of E. faecalis.  相似文献   

2.
The ability to adhere in vitro to urinary catheters and the presence of enterococcal virulence factors was determined in 30 Enterococcus urinary isolates (12 E. faecalis, 12 E. faecium, 3 E. casseliflavus, 3 E. gallinarum). Silicone, siliconized latex and polyvinyl chloride (PVC) were examined by sonication quantitative culture technique and scanning electron microscope. As compared to E. faecalis and E. faecium, E. casseliflavus and E. gallinarum displayed lower adhesion to all synthetic materials. All the tests performed showed higher adherence of all tested strains to siliconized latex and silicone than to PVC. Biofilmforming ability was observed in 5 E. faecalis but in none of the remaining strains. The gene coding enterococcal surface protein (Esp) was detected in 7 E. faecalis and 6 E. faecium strains. Gelatinase was found in 1 E. faecalis, 2 E. faecium and hemolysins were found in 6 E. faecalis and 1 E. faecium strains. All E. casseliflavus and E. gallinarum strainswere negative for these traits. Hydrophobic type of cell surface (measured by its affinity for n-hexadecane) was shown in a few isolates. Bacterial adherence was not significantly associated with the above pathogenic factors.  相似文献   

3.
The effect of two subinhibitory antibiotic concentrations of ampicillin and vancomycin during growth on the adhesion of Enterococcus faecalis 1131 to glass and silicone rubber was studied in a parallel plate flow chamber. Initial deposition rates and numbers of adhering bacteria after 4 h were higher on hydrophilic glass than on hydrophobic silicone rubber, regardless of growth conditions. The presence of 1/4 minimal inhibitory concentration (MIC) of ampicillin during growth reduced enterococcal adhesion to both substrata, but growth in the presence of 1/4 MIC vancomycin did not affect the adhesion of E. faecalis. Moreover, enterococcal adhesion increased after growth in the presence of 1/8 MIC vancomycin. The increased adhesion after growth in the presence of subinhibitory concentrations of vancomycin may have strong implications for patients living with implanted biomaterials, as they may suffer adverse effects from use of this antibiotic, especially since bacteria once adhered are less sensitive to antibiotics.  相似文献   

4.
Biofilm formation is an increasing problem in medicine, due to the intrinsic resistance of microorganisms in the biofilm mode of growth against the host immune system and antimicrobial therapy. Adhesion is an important step in biofilm formation, influenced, among other factors, by the surface hydrophobicities and charges of both the substratum and the adhering microorganisms. Enterococcus faecalis strains generally display subpopulations with different surface charges, expressed as bimodal zeta potential distributions. Two-thirds of E. faecalis strains isolated from clogged biliary stents displayed such heterogeneity of surface charges in culture. In this study, the influence of this culture heterogeneity on initial adhesion and subsequent biofilm formation was investigated. Heterogeneous strains were retained in higher numbers on polystyrene than homogeneous strains. Also, biofilm formation was much more pronounced for heterogeneous strains than for homogeneous strains. In a population enriched to display only one subpopulation, fewer bacteria were retained than in its original heterogeneous culture. Also, the enriched subpopulation formed less biofilm than its original heterogeneous culture. The presence of ox bile during adhesion resulted in fewer retained bacteria, although heterogeneous strains were still retained in significantly higher numbers than were homogeneous strains, and, in general, the presence of ox bile reduced biofilm formation. The initial adhesion and biofilm formation were independent of the presence of the gene encoding the enterococcal surface protein (esp) or the expression of gelatinase (GelE). It is concluded that heterogeneity in cell surface charge represents an advantage for bacteria in the colonization of surfaces.  相似文献   

5.
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.  相似文献   

6.
7.
Esp-independent biofilm formation by Enterococcus faecalis   总被引:12,自引:0,他引:12       下载免费PDF全文
Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.  相似文献   

8.
The resistance to detergents and detergent-induced tolerance of a gastrointestinal organism, Enterococcus faecalis ATCC 19433, were examined. The most remarkable observation was the rapid response of cells in contact with bile salts and sodium dodecyl sulfate (SDS). The killing by high concentrations of detergents was nearly instantaneous. A 5-s adaptation with moderate sublethal concentrations of bile salts or SDS (0.08 or 0.01%, respectively) was sufficient to induce significant adaptation against homologous lethal conditions (0.3% bile salts or 0.017% SDS). However, resistance to a subsequent lethal challenge progressively increased further to a maximum reached after 30 min of adaptation. Furthermore, extremely strong cross-resistances were observed with bile salts- and SDS-adapted cells. However, no relationship seems to exist between levels of tolerance and de novo-synthesized proteins, since blockage of protein synthesis during adaptation had no effect on induction of resistance to bile salts and SDS. We conclude that this induced tolerance to detergent stress is independent of protein synthesis. Nevertheless, the stress-induced protein patterns of E. faecalis ATCC 19433 showed significant modifications. The rates of synthesis of 45 and 34 proteins were enhanced after treatments with bile salts and SDS, respectively. In spite of the overlap of 12 polypeptides, the protein profiles induced by the two detergents were different, suggesting that these detergents trigger different responses in E. faecalis. Therefore, bile salts cannot be substituted for SDS in biochemical detergent shock experiments with bacteria.  相似文献   

9.
The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.  相似文献   

10.
Enterococcal surface protein (Esp) is a cell wall-associated protein of Enterococcus faecalis that has been identified as a potential virulence factor. We used a mouse model to examine whether Esp facilitates intestinal colonization or translocation of E. faecalis to mesenteric lymph nodes. After clindamycin treatment, similar levels of high-density colonization were established after orogastric inoculation of an E. faecalis isolate containing the esp gene within a large pathogenicity island and an isogenic mutant created by allelic replacement of the esp gene with a chloramphenicol resistance cassette (P=0.7); translocation to mesenteric lymph nodes was detected in 3 of 12 (25%) mice in both groups. Isogenic mutants of FA2-2 (a plasmid-free derivative of E. faecalis strain JH2) with or without the esp gene failed to establish colonization of clindamycin-treated mice. These results suggest that Esp does not facilitate intestinal colonization or translocation of E. faecalis.  相似文献   

11.
Enterococci are increasingly important causes of nosocomial disease. Also, they are associated with food and have a history of use as dairy starter and probiotic cultures. An enterococcal surface protein Esp(fs) is involved the virulence and biofilm-forming capacity of Enterococcus faecalis and recently we demonstrated the presence of a homologue Esp(fm) in E. faecium. Here we describe the complete structure of Esp(fm) and demonstrate that its distribution in E. faecium correlates with disease associated strains from a range of pathological sites.  相似文献   

12.
Forty-one Enterococcus faecalis (E. faecalis) isolates from feces of pigs and chickens in Korea were screened for the presence of virulence factors. Gelatinase activity (85.4%, 35/41) was the more commonly observed phenotype of virulence in E. faecalis, compared with hemolytic activity (12.2%, 5/41). Thirty-one of 35 (88.6%) gelatinase-positive E. faecalis isolates harbored the gelE and fsrABC genes. A gene encoding for the enterococcal surface protein (Esp) was detected in 24.4% (10/41) of the isolates. All betahemolysin- producing isolates harbored the esp gene.  相似文献   

13.
Strompfová V  Lauková A 《Anaerobe》2007,13(5-6):228-237
In recent years, the approach of using innovative strategies such as probiotics or bacteriocins for the prevention or treatment of bacterial infections has come into focus. The present study was undertaken to check in vitro ability of Enterococci-isolated from the gastrointestinal tract of chickens-to produce a bacteriocin-like substance and to describe some further probiotic properties in five selected Enterococcus faecium strains. All strains (n=17) were found to produce bacteriocin-like substances against 14 out of 20 indicator bacteria of animal, food or environmental origin. Selected E. faecium strains expressed sufficient survival by pH 3.0 after 3h, in the presence of 1% bile after 24h and they were sensitive to most of antimicrobials tested. All tested strains adhere to the human, canine and porcine intestinal mucus (between 1.5% and 9.2%). However, better adhesion ability was observed for the canine mucus. PCR detection of enterocin structural genes determined presence of enterocins A and P genes in all selected strains. Characterization of bacteriocin substance in detail was performed in E. faecium EF55. The EF55 strain produced a bacteriocin-like substance (during the late logarithmic and early stationary growth phase) with inhibitory activity mostly against Gram-positive bacteria (100-51,200 AU/mL) including Listeria monocytogenes. Proteinaceous character of the bacteriocin substance was confirmed (its inhibitory activity was lost after its treatment with proteases), it was found to be stable after heating (100 degrees C 10 min) and during 12 months storage at -20 degrees C. The highest inhibitory activity of bacteriocin produced by EF55 strain (growing in MRS) broth was achieved between pH 7.0 and 9.0.  相似文献   

14.
Enterococci have emerged as one of the leading causes of nosocomial bloodstream, surgical site, and urinary tract infections. More recently, enterococci have been associated with biofilms, which are bacterial communities attached to a surface and encased in an extracellular polymeric matrix. The enterococcal cell surface-associated protein, Esp, enhances biofilm formation by Enterococcus faecalis in a glucose-dependent manner. Mature Esp consists of a nonrepeat N-terminal domain and a central region made up of two types of tandem repeats followed by a C-terminal membrane-spanning and anchor domain. This study was undertaken to localize the specific domain(s) of Esp that plays a role in Esp-mediated biofilm enhancement. To achieve this objective, we constructed in-frame deletion mutants expressing truncated forms of Esp in an isogenic background. By comparing strains expressing the mutant forms of Esp to those expressing wild-type Esp, we found that the strain expressing Esp lacking the N-terminal domain formed biofilms that were quantitatively less in biovolume than the strain expressing wild-type Esp. Furthermore, an E. faecalis strain expressing only the N-terminal domain of Esp fused to a heterologous protein anchor formed biofilms that were quantitatively similar to those formed by a strain expressing full-length Esp. This suggested that the minimal region contributing to Esp-mediated biofilm enhancement in E. faecalis was confined to the nonrepeat N-terminal domain. Expression of full-length E. faecalis Esp in heterologous host systems of esp-deficient Lactococcus lactis and Enterococcus faecium did not enhance biofilm formation as was observed for E. faecalis. These results suggest that Esp may require interaction with an additional E. faecalis-specific factor(s) to result in biofilm enhancement.  相似文献   

15.
Whereas capsulate strains of Neisseria meningitidis are dependent on pili for adhesion to human endothelial and epithelial cells, strains which lacked assembled pili and were partially capsule-deficient adhered to and invaded human endothelial and epithelial cells if they expressed the Opc protein. Bacteria expressing low or undetectable levels of Opc protein failed to adhere to or invade eukaryotic cells. In addition, the presence of OpaAC751 protein on the surface of bacteria did not increase bacterial interactions with host cells. Association of Opc-expressing bacteria was inhibited by antibodies against Opc. Invasion was dependent on the host-cell cytoskeletal activity and was inhibited by cytochalasin D. In some cells, infected at the apical surface, bacteria emerging from basal surface were detected by electron microscopy. Opc is found in diverse meningococci and may represent a common virulence factor which facilitates adherence and invasion by these bacteria.  相似文献   

16.
A total of 142 human and 88 calf bifidobacteria were isolated and identified; approximately 12 % of all isolated strains exhibited auto-aggregation (Agg) phenotype (Agg+). Properties considered to be predicting for their adhesion to intestine, i.e. auto-aggregation, and hydrophobicity were determined by xylene extraction in 18 human and 8 calf origin bifidobacteria. Co-aggregation of 8 human bifidobacteria with 8 clostridia was also evaluated. Agg varied between 16.3 and 96.4 %, hydrophobicity values ranged from 0 to 82.8 %. The strongest Agg and hydrophobicity were observed in B. bifidum and B. merycicum isolates. However, there were no statistically significant correlations between these two properties. Variability in the percentage of Agg and hydrophobicity was observed after cultivation of bifidobacteria on different carbon sources. All bifidobacteria showed co-aggregation ability with clostridia tested but there were remarkable differences depending on specific combinations of strains. The bifidobacterial strains with the highest ability to co-aggregate with clostridia were B. bifidum I4 and B. longum I10 isolated from infants; these strains gave also high values of Agg. Agg properties together with co-aggregation ability with potential pathogen can be used for preliminary selection of probiotic bacteria.  相似文献   

17.
One hundred wild-type strains of the genus Lactobacillus were isolated from the small intestine of newly-slaughtered pigs up to 6 months of age. Cell surface hydrophobicity and capsule formation were studied on a number of strains. Strains showing high surface hydrophobicity as measured by the salt-aggregation test and hydrophobic interaction chromatography on Octyl Sepharose were commonly found to adhere in high numbers to isolated pig intestinal epithelial cells. Heat and protease treatment of bacteria of high surface hydrophobicity, including autoaggregating strains in phosphate-buffered saline, showed a drastic decline in this surface property. Three hydrophilic strains (LBp 1044, 1068 and 1073) also showed binding to intestinal cells but at a lower level (approx. 5 bacteria/cell) as compared with the best binding hydrophobic strain (LBp 1063, approx. 11 bacteria/cell). These findings suggest that different or multiple adhesion mechanisms may be involved in the colonization of the small intestinal mucosa of pigs. Cultures of selected strains grown in liquid media rich in carbohydrates did not affect their hydrophobic cell surface character. Therefore it seems less likely that carbohydrate capsule polymers are the major determinants of intestinal colonization of lactobacilli in pigs.  相似文献   

18.
Surface properties of lactobacilli isolated from the small intestine of pigs   总被引:12,自引:0,他引:12  
One hundred wild-type strains of the genus Lactobacillus were isolated from the small intestine of newly-slaughtered pigs up to 6 months of age. Cell surface hydrophobicity and capsule formation were studied on a number of strains. Strains showing high surface hydrophobicity as measured by the salt-aggregation test and hydrophobic interaction chromatography on Octyl Sepharose were commonly found to adhere in high numbers to isolated pig intestinal epithelial cells. Heat and protease treatment of bacteria of high surface hydrophobicity, including autoaggregating strains in phosphate-buffered saline, showed a drastic decline in this surface property. Three hydrophilic strains (LBp 1044, 1068 and 1073) also showed binding to intestinal cells but at a lower level (approx. 5 bacteria/cell) as compared with the best binding hydrophobic strain (LBp 1063, approx. 11 bacteria/cell). These findings suggest that different or multiple adhesion mechanisms may be involved in the colonization of the small intestinal mucosa of pigs. Cultures of selected strains grown in liquid media rich in carbohydrates did not affect their hydrophobic cell surface character. Therefore it seems less likely that carbohydrate capsule polymers are the major determinants of intestinal colonization of lactobacilli in pigs.  相似文献   

19.
Dependence of adhesion and colonization of hydrophilic and hydrophobic surfaces by Escherichia coli strains with different mobility and chemotaxis was studied using E. coli mot+che+, E. coli mot+che-, E. coli mot-che+. Primary adhesion was shown to correlate with mobility of cells and hydrophilic/hydrophobic character of their surface. Secondary adhesion correlated in addition with chemotactic characteristics of bacteria. E. coli populations were shown to vary in electrophoretic mobility and cells capability for adhesion and chemotaxis.  相似文献   

20.
Enterococcus faecalis aggregation substance (AS) mediates efficient adhesion between bacteria, thereby facilitating plasmid exchange as an integral part of a bacterial sex pheromone system. We examined the interaction of AS-bearing E. faecalis with human neutrophils (PMNs), an important component of the host defense system. AS promoted a markedly increased opsonin-independent bacterial binding to PMNs. Adhesion was dependent on the expression of the enterococcal Asc10 protein, which contains two Arg-Gly-Asp (RGD) sequences, and addition of exogenous RGD-containing peptides inhibited AS-mediated binding by 66%. AS-mediated adhesion was inhibited by 85% by anti-human complement receptor type 3 (CR3) monoclonal antibodies or by use of PMNs from a patient with leukocyte adhesion deficiency. However, AS-bearing E. faecalis cells were unable to bind to CHO-Mac-1 cells, expressing functionally active CR3, suggesting the potential need for additional PMN surface receptors for bacterial adhesion. Monoclonal antibodies against integrin-associated protein (CD47) and L-selectin, both of which may interact with CR3 and bind to ligands on E. faecalis, also inhibited AS-dependent binding. The non-opsonic binding of E. faecalis to PMNs may play an important role in this organism's pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号