首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and clinical data support the notion that peroxisome proliferator-activated receptor γ (PPARγ) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPARγ agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPARγ activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPARγ antagonist), and losartan with no PPARγ activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NFκB) activation and tumor necrosis factor α. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPARγ activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPARγ in db/db mice and this effect of telmisartan was cancelled by the coadministration of GW9662. Our data provided the first evidence indicating that PPARγ activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. PPARγ activity of telmisartan was involved in the normalization of vascular PPARγ downregulation in diabetic mice. Thus, telmisartan seems to exert vascular protective effects in hypertensive patients with diabetes.  相似文献   

2.
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.  相似文献   

3.
Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.  相似文献   

4.
Vascular complications of chronic hyperglycemia cause most of diabetes-associated morbidity and mortality. Main targets of chronic hyperglycemia are vascular endothelial cells. Ischemia is the late consequence of vascular damage in patients with diabetes and triggers an angiogenic response. In patients with diabetes, the angiogenic response to chronic ischemia can be excessive in some of the target organs and insufficient in others, in the same individual. The direct effects of hyperglycemia on the expression level of vascular growth factors have been variably appreciated and depend on the studied organ and model. Beyond the described effects of hyperglycemia on the expression level of vascular growth factors, direct and indirect effects of hyperglycemia on endothelial cell proliferation, extra-cellular matrix and metalloproteases might be involved in the pathology of angiogenesis in diabetes.  相似文献   

5.
Because plasma levels of protein C (PC) or activated protein C (APC) are altered in certain diseases associated with vascular dysfunction, and APC has therapeutic potential in preventing microvascular coagulation in severe sepsis, potential vascular effects of PC and APC were compared to those of the vasoactive peptide, thrombin. Thrombin was a more potent relaxant agonist than contractile agonist in aorta. Unlike thrombin, cumulatively administered APC (10(-9)-10(-7) M) did not exert vascular effects in rat or rabbit aorta. Noncumulative challenge of PC (10(-7) M) and APC (8 x 10(-8) M) also did not contract rat or rabbit aortae, either with or without endothelium. Likewise, the same concentrations of PC and APC also did not relax norepinephrine-induced (10(-7) M) vascular tone in either rat or rabbit aortae. Thus, in contrast to thrombin, PC and APC failed to modulate vascular tone, suggesting that the therapeutic use of APC is unlikely to be accompanied by any direct effects on vascular motility.  相似文献   

6.
A new concept about sympathetic nerves has emerged recently: not only is sympathetic tone important in short-term regulation of vascular resistance, but chronic effects of nerves on vessels have important effects. This concept is supported by studies of mechanisms by which sympathetic nerves protect the blood-brain barrier (BBB). The BBB is susceptible to disruption during acute and chronic hypertension. Acute, severe hypertension produces passive dilatation of cerebral vessels with disruption of the BBB. Sympathetic stimulation attenuates the increase in cerebral blood flow during acute hypertension and thereby protects the BBB. During chronic hypertension, we have observed disruption of the barrier, which may contribute to hypertensive encephalopathy. Sympathetic nerves protect against disruption of the BBB during chronic hypertension. This protective effect is apparently related to a trophic effect of nerves in promotion of cerebral vascular hypertrophy during chronic hypertension. Thus, this is the first evidence that, in the same vascular bed, sympathetic nerves have two different protective effects. Protection of the BBB is accomplished acutely by sympathetic neural effects on vascular resistance and chronically by promotion of vascular hypertrophy.  相似文献   

7.
Xie YW  Ming DS  Xu HX  Dong H  But PP 《Life sciences》2000,67(15):1913-1918
Methanolic extract and two purified compounds (brazilin and hematoxylin) from Caesalpinia sappan were examined for their relaxant effects in isolated rat thoracic aorta. The methanolic extract significantly and dose-dependently relaxed the alpha1-receptor agonist phenylephrine-precontracted aortic rings, without affecting passive tension of these vessels. Removal of the vascular endothelium, inhibition of nitric oxide (NO) synthase with 0.1 mM Nomega-nitro-L-arginine and of cGMP biosynthesis with 10 microM methylene blue abolished the vasorelaxant effects of the herbal extract at doses up to 30 microg/ml. Similar vasorelaxant effects were observed with brazilin and hematoxylin. Therefore, these results suggest that brazilin and hematoxylin may be responsible for the vascular relaxant effects of C. sappan, via endogenous NO and subsequent cGMP formation. The vascular relaxant effects of the plant may contribute to its therapeutic actions.  相似文献   

8.
Maternal alcohol consumption during pregnancy is a significant field of scientific exploration primarily because of its negative effects on the developing fetus, which is specifically defined as fetal alcohol spectrum disorders. Though the effects on the mother are less explored compared with those on the fetus, alcohol produces multiple effects on the maternal vascular system. Alcohol has major effects on systemic hemodynamic variables, endocrine axes, and paracrine factors regulating vascular resistance, as well as vascular reactivity. Alcohol is also reported to have significant effects on the reproductive vasculature including alterations in blood flow, vessel remodeling, and angiogenesis. Data presented in this review will illustrate the importance of the maternal vasculature in the pathogenesis of fetal alcohol spectrum disorders and that more studies are warranted in this field.  相似文献   

9.
In a previous study, we found that a long-term infusion of atrial natriuretic peptide (ANP) produced a sustained reduction of mean arterial pressure and peripheral vascular resistance in two-kidney, one-clip (2K-1C) hypertensive rats, whereas in control rats it had only a transient effect on cardiac output. However, plasma levels of ANP were actually 3-fold higher in normotensive than in hypertensive rats. Previous studies suggested that plasma ANP levels might modulate the vascular reactivity to the peptide. The present study examined whether the lack of chronic hemodynamic effects of ANP in control rats was due to changes in vascular reactivity to the peptide. In control rats, vascular reactivity to ANP was reduced 50% by a chronic infusion of ANP. However, in 2K-1C hypertensive rats, a long-term infusion of ANP had no effect on the vascular reactivity to ANP. The results of the present study indicate that the lack of persistent hemodynamic effects of a chronic infusion of ANP in control rats may be due to a decrease in the vascular reactivity to the peptide. The sustained hypotensive and vasodilatory effects of a long-term infusion of ANP in 2K-1C hypertensive rats are associated with no changes in the vascular reactivity to ANP.  相似文献   

10.
Activation of vascular mineralocorticoid (MR) or estrogen receptors (ER) exerts opposing effects on vascular remodeling. As we have previously shown, activation of either estrogen receptor subtype, ERα or ERβ, is fully sufficient to attenuate vascular remodeling in aldosterone salt-treated rats. To further elucidate the underlying mechanism(s) we tested the hypothesis that ER and MR activation might differentially modulate vascular reactive oxygen species (ROS) generation. In support of this concept, aldosterone increased ROS generation in vascular smooth muscle cells as determined by quantitative dihydroethidium fluorescence microscopy. Co-treatment with the selective ERα agonist 16α-LE2, the selective ERβ agonist 8β-VE2 or the non-selective ER agonist 17β-estradiol (E2) significantly reduced aldosterone-induced ROS generation. The pure ER antagonist ICI 182,780 completely blocked these salutary effects of E2, 16α-LE2 and 8β-VE2. Activation of ERα or ERβ fully blocked the reduction of intracellular nicotinamide adenine dinucleotide phosphate (NADPH) levels observed in aldosterone treated vascular smooth muscle cells. Intracellular NADPH levels were closely associated with expression and activity of the NADPH generating enzyme glucose-6-phosphate dehydrogenase. In conclusion, estrogens attenuate the detrimental vascular effects of excessive MR activation at least in part by preventing the depletion of intracellular NADPH levels.  相似文献   

11.
The effects of endothelin on the vascular renin-angiotensin system were examined in isolated perfused rat mesenteric arteries by measuring vascular renin activity and angiotensin II released into the perfusate. Infusion of endothelin (10(-9)M and 10(-11)M) increased the vascular renin activity and angiotensin II release. Pretreatment with nicardipine (10(-6)M), a calcium channel blocker, significantly suppressed these effects of endothelin. These results suggest that endothelin activates the vascular renin-angiotensin system via intracellular calcium metabolism. Vascular angiotensin II produced by endothelin may modulate the local effect of endothelin on the resistance vessels.  相似文献   

12.
Acetylcholine's effect on the distribution of vascular resistance and compliance in the canine pulmonary circulation was determined under control and elevated vascular tone by the arterial, venous, and double occlusion techniques in isolated blood-perfused dog lungs at both constant flow and constant pressure. Large and small blood vessel resistances and compliances were studied in lungs given concentrations of acetylcholine ranging from 2.0 ng/ml to 200 micrograms/ml. The results of this study indicate that acetylcholine dilates large arteries at low concentrations (less than or equal to 20 ng/ml) and constricts small and large veins at concentrations of at least 2 micrograms/ml. Characterization of acetylcholine's effects at constant pulmonary blood flow indicates that 1) large artery vasodilation may be endothelial-derived relaxing factor-mediated because the dilation is blocked with methylene blue; 2) a vasodilator of the arachidonic acid cascade (blocked by ibuprofen), probably prostacyclin, lessens acetylcholine's pressor effects; 3) when vascular tone was increased, acetylcholine's hemodynamic effects were attenuated; and 4) acetylcholine decreased middle compartment and large vessle compliance under control but not elevated vascular tone. Under constant pressure at control vascular tone acetylcholine increases resistance in all segments except the large artery, and at elevated vascular tone the pressor effects were enhanced, and large artery resistance was increased.  相似文献   

13.
Sphingosine-1-phosphate (S1P) is a blood-borne lipid mediator with pleiotropic biological activities. S1P acts via the specific cell surface G-protein-coupled receptors, S1P(1-5). S1P(1) and S1P(2) were originally identified from vascular endothelial cells (ECs) and smooth muscle cells, respectively. Emerging evidence shows that S1P plays crucial roles in the regulation of vascular functions, including vascular formation, barrier protection and vascular tone via S1P(1), S1P(2) and S1P(3). In particular, S1P regulates vascular formation through multiple mechanisms; S1P exerts both positive and negative effects on angiogenesis and vascular maturation. The positive and negative effects of S1P are mediated by S1P(1) and S1P(2), respectively. These effects of S1P(1) and S1P(2) are probably mediated by the S1P receptors expressed in multiple cell types including ECs and bone-marrow-derived cells. The receptor-subtype-specific, distinct effects of S1P favor the development of novel therapeutic tactics for antitumor angiogenesis in cancer and therapeutic angiogenesis in ischemic diseases.  相似文献   

14.
The effects of indomethacin on the pulmonary circulation and the response of the circulation to hypoxia were investigated in premature and mature newborns using an isolated perfusion technique on otherwise intact left lungs in situ. There was an increase in pulmonary vascular resistance and augmentation of the increase in pulmonary vascular resistance during hypoxia following indomethacin. These effects were greater in the premature than in the mature newborn. Indomethacin effectively removes a dilator influence on the pulmonary circulation. The results are consistent with the concept that prostaglandins are important in regulating pulmonary vascular resistance.  相似文献   

15.
Thyroid hormone (TH) treatment exerts beneficial effects on the cardiovascular system: it lowers cholesterol and LDL levels and enhances cardiac contractile function. However, little is known about the effect of TH on vascular function or the functional role of TH receptors (TRs) in the regulation of vascular tone. We have investigated the contribution of TRs to vascular contractility in the heart. Among different TR subtype-specific knockout (KO) mice, vascular contraction was significantly enhanced in coronary arteries isolated from TRα KO compared with wild-type mice, while chronic TH treatment significantly attenuated coronary vascular contraction. We found that TRα is the predominant TR in mouse coronary smooth muscle cells (SMCs). Coronary SMCs isolated from TRα KO mice exhibited a significant decrease in K(+) channel activity, whereas TH treatment increased K(+) channel activity in a dose-dependent manner. These data suggest that TRα in SMCs has prominent effects on regulation of vascular tone and TH treatment helps decrease coronary vascular tone by increasing K(+) channel activity through TRα in SMCs.  相似文献   

16.
Aldosterone and the vascular system   总被引:1,自引:0,他引:1  
Aldosterone can act in different tissues exerting physiological and pathological effects. At the vascular level, aldosterone affects endothelial function since administration of aldosterone impaired endothelium-dependent relaxations. In addition, the administration of mineralocorticoid receptor antagonists ameliorate relaxation to acetylcholine in models of both hypertension and atherosclerosis and in patients with heart failure. A reduction in nitric oxide levels seems to be the main mechanism underlying this effect due to a reduction in its production as well as an increase in its degradation by reactive oxygen species. Aldosterone is a pro-inflammatory factor that can participate in the vascular inflammatory process associated with different pathologies including hypertension through activation of the NFkappaB system, which mediates the vascular production of different cytokines. This mineralocorticoid also participates in the vascular remodeling observed in hypertensive rats since the administration of eplerenone improved the media-to-lumen ratio in these animals. This effect seems to be due to an increase in extracellular matrix. In summary, aldosterone through mineralocorticoid receptors can participate in the vascular damage associated with different pathologies including hypertension through its prooxidant, pro-inflammatory and profibrotic effects that triggered endothelial dysfunction, an inflammatory process and vascular remodeling.  相似文献   

17.
Heme oxygenase-1 (HO-1) has potent anti-inflammatory activity and recognized vascular protective effects. We have recently described the expression and vascular protective effects of an anti-inflammatory interleukin (IL-19), in vascular smooth muscle cells (VSMC) and injured arteries. The objective of this study was to link the anti-inflammatory effects of IL-19 with HO-1 expression in resident vascular cells. IL-19 induced HO-1 mRNA and protein in cultured human VSMC, as assayed by quantitative RT-PCR, immunoblot, and ELISA. IL-19 does not induce HO-1 mRNA or protein in human endothelial cells. IL-19 activates STAT3 in VSMC, and IL-19-induced HO-1 expression is significantly reduced by transfection of VSMC with STAT3 siRNA or mutation of the consensus STAT binding site in the HO-1 promoter. IL-19 treatment can significantly reduce ROS-induced apoptosis, as assayed by Annexin V flow cytometry. IL-19 significantly reduced ROS concentrations in cultured VSMC. The IL-19-induced reduction in ROS concentration is attenuated when HO-1 is reduced by siRNA, indicating that the IL-19-driven decrease in ROS is mediated by HO-1 expression. IL-19 reduces vascular ROS in vivo in mice treated with TNFα. This points to IL-19 as a potential therapeutic for vascular inflammatory diseases and a link for two previously unassociated protective processes: Th2 cytokine-induced anti-inflammation and ROS reduction.  相似文献   

18.
The effects of etilefrine on the ventral caudal artery of the rat have been examined in the presence of agents modifying sympathetic nerve function. Catecholamine levels were also measured in adjacent segments of artery to those studied pharmacologically and an attempt made to relate vascular response to etilefrine (and tyramine) with catecholamine content. Both guanethidine and reserpine produced significant attenuation of the vascular effects of etilefrine and tyramine. Pre-treatment with a monoamine oxidase inhibitor caused an increase in tissue catecholamine levels but, paradoxically, depressed the vascular response to etilefrine. The significance of some of the findings in terms of an indirect component to etilefrine's action are discussed.  相似文献   

19.
In anaesthetized paralysed, mechanically ventilated pigs, the vascular and respiratory effects of 80 ppm nitric oxide (NO) inhaled for 6 min were evaluated. To evoke different levels of smooth muscle contraction ET-1 or PAF, mediators involved in pulmonary disorders, were used. In control conditions, inhaled NO caused selective pulmonary vasodilatation without affecting respiratory resistances. This pulmonary vascular activity influenced the distensibility of the respiratory system and decreased inspiratory work. ET-1 administration significantly increased pulmonary arterial pressure and modestly changed mechanical properties of the respiratory system, while PAF caused potent vasoconstriction and bronchoconstriction associated with a marked change in volume-pressure relationship. In both cases, the changes in vascular and mechanical properties of the respiratory system increased inspiratory work. The vascular and respiratory activities of inhaled NO were correlated with preconstriction levels. The data show that the combination of vascular and respiratory effects improves pulmonary function, suggesting that inhalation of NO is a possible therapeutic approach for obstructive and inflammatory pulmonary diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号