首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain further evidence of putative neurotransmitters in primary sensory neurons and interneurons in the dorsal spinal cord, we have studied the effects of unilateral section of dorsal roots and unilateral occlusion of the dorsal spinal artery on cholinergic enzyme activity and on selected amino acid levels in the spinal cord. One week after sectioning dorsal roots from caudal cervical (C7) to cranial thoracic (T2) levels, the specific activity of choline acetyltransferase (ChAT) was significantly decreased and acetylcholinesterase (AChE) showed a tendency to decrease in the dorsal quadrant on the operated side of the spinal cord. Dorsal root sectioning had little effect on the levels of free glutamic acid or other amino acids in the dorsal spinal cord. These results suggest that primary sensory neurons may include some cholinergic axons, and that levels of putative amino acid transmitters are not regulated by materials supplied by axonal transport from the dorsal root ganglia. By contrast, one week following unilateral occlusion of the dorsal spinal artery, the activities of ChAT and AChE were unchanged in the operated quadrant of the spinal cord, while decreases of Asp, Glu, and GABA, and an increase in Tau were detected. These findings are consistent with the proposals that such amino acids, but not ACh, may function as neurotransmitter candidates in interneurons of the dorsal spinal cord.Abbreviation used ACh acetylcholine - AChE acetylcholinesterase - Asp aspartic acid - ChAT choline acetyltransferase - GABA -aminobutyric acid - Glu glutamic acid - Gly glycine - SP substance P - Tau taurine  相似文献   

2.
Dogs were made paraplegic by complete mid-thoracic spinal cord transection. The content of glycine, glutamate, aspartate, and γ-aminobutyric acid were determined in ventral and central grey matter from the lumbar enlargement of the spinal cord at 1, 3 and 8 weeks after transection. A rapid decrease in the content of aspartate and glycine accompanied the onset of spasticity. By the eight week post-transection, aspartate and glycine had decreased to less than 50% of control levels.  相似文献   

3.
Evidence thatl-glutamate is a neurotransmitter of corticofugal fibers was sought by measuring changes in several biochemical markers of neurotransmitter function in discrete regions of spinal cord after ablation of sensorimotor cortex in monkeys. One and five weeks after unilateral cortical ablation, samples from six areas of spinal cord (ventral, lateral and dorsal regions of the left and right sides) were analysed for choline acetyltransferase (ChAT) activity and contents of amino acid transmitter candidates-glutamic acid (Glu), aspartic acid (Asp), glycine (Gly), taurine (Tau) and -aminobutyric acid (GABA). During one to five weeks after unilateral cortical ablation of the monkey, prolonged hemiplegia in the contralateral side was observed. Histological examination of the spinal cord 5 weeks after unilateral (left) cortical ablation showed no apparent change in either control (ipsilateral, left) or affected (contralateral, right) sides of the cord as examined by the Klüver-Barrera method. The ChAT activity as a cholinergic marker was scarcely changed in any region of either left (control) or right (affected) side of the spinal cord at one and five weeks after unilateral (left side) ablation of the motor cortex. Amino acid levels in each region of the spinal cord were not significantly changed one week after unilateral ablation of the motor cortex. However, a significant decrease of Glu content was observed in the lateral column of the affected (right) side compared to the control (left) side of cervical and lumbar cord five weeks after cortical ablation of the left motor area. No concomitant alterations of other amino acids were detected. These data strongly suggest thatl-Glu is a neurotransmitter for corticofugal pyramidal tract fibers to anterior horn secondary neurons related to motor control activity in monkey spinal cord.  相似文献   

4.
Although GABA and piperidine-4-sulphonic acid depolarize I a afferent terminations in the cat spinal cord by activation of bicuculline-sensitive GABA receptors, no evidence was obtained for a bicuculline-sensitive alteration by either gabamimetic of the electrical threshold of rubrospinal terminations in the spinal intermediate nucleus. The terminal axonal arborizations in the spinal cord of neurons in the red nucleus thus do not have GABA receptors similar to those on the cell bodies. The results are discussed in relation to the depolarizing action of GABA on some central neurons, and on neurons with peripheral cell bodies, and to probable differences in the intracellular chloride content of neurons having peripheral or central cell bodies, and thus of different embryological origin. A presynaptic depolarizing inhibitory process mediated by GABA appears to be confined to the terminals of primary afferent fibres in the mammalian central nervous system.  相似文献   

5.
Tetanus toxin injected intramuscularly induced no significant changes in the levels of glycine, GABA, glutamate, glutamine or aspartate in extracts of spinal cord from rats killed at timed intervals during the development of local and generalized tetanus. The amino acid contents in the hemisegment (longitudinal one-half) of the spinal cord (L2-L6) on the injected side (left gastrocnemius muscle) did not differ significantly from the contents in the hemisegment of the spinal cord on the non-injected side. Nor were there any consistent changes in the contents of the amino acids in either hemisegment of the spinal cord as the tetanic symptoms became progressively more severe. Hence, the amino acid pool in the spinal cord was relatively stable despite the metabolic changes known to occur in tetanus. Our observations are consistent with the view of Johnston , De Groat and CURTIS (1969) who suggested that if glycine were indeed a spinal inhibitory neurotransmitter released by interneurons affected by tetanus toxin, the toxin should interfere with the release of the amino acid rather than deplete the transmitter stores.  相似文献   

6.
Abstract— A method was developed for perfusion of the spinal subarachnoid space in the rat. Bidirectional steady-state fluxes of [14C]glycine between spinal fluid and plasma were measured. [14C]glycine clearance from spinal fluid was 5-fold greater than its clearance from plasma. Glycine was transported out of spinal fluid by a saturable process, and the rate of transport was unaffected by the other depressant amino acids, GABA, β-alanine, and taurine. Perfused [14C]glycine and [3H]GABA distributed in an intracellular compartment in spinal cord. The preparation should be useful for study of the release of these inhibitory amino acids from the intact spinal cord.  相似文献   

7.
Abstract— Distribution profiles of taurine and activity of cysteine sulphinate decarboxylase (CSD), the enzyme catalysing the formations of hypotaurine from cysteine sulphinate and of taurine from cysteate respectively, in the rat spinal cord and thalamus were studied in comparison with those of GABA and activity of l -glutamate decarboxylase (GAD), the rate limiting enzyme for GABA formation. In the spinal cord (L2-L3), it was found that taurine is fairly evenly distributed, whereas the activity of CSD is higher in the dorsal half of the spinal cord than in the ventral half. The highest CSD activity was found in the dorsal part of the dorsal horn. In the anterior part (A 5.4) of the thalamus, taurine and CSD activity were also distributed evenly and no areas having high taurine content and CSD activity were detected. In contrast with the even distributions of taurine and CSD activity, both GABA and GAD activity were distributed unevenly in the same CNS areas examined: The areas having high GABA content and GAD activity in the thalamus (A 5.4) coincided with the ventrolateral part of the ventral nucleus of thalamus (VM), entopeduncular nucleus (EP) and nucleus reuniens thalami (RE), whereas those in the spinal cord were found to be in the dorsal part of the dorsal horn and surrounding parts of the central canal, respectively. Considering a probable role of GABA in mammalian central nervous system (CNS) as an inhibitory neurotransmitter, it seems unlikely that taurine acts as an inhibitory neurotransmitter at least in the rat spinal cord and thalamus.  相似文献   

8.
Moran JM  Enna SJ  McCarson KE 《Life sciences》2001,68(19-20):2287-2295
GABA(B) receptors are heterodimers coupled to G-proteins. The present study was undertaken to investigate activation of GABA(B) receptors in cerebral cortex and spinal cord using [35S]GTPgammaS binding assays, a direct measure of G-protein activity. The results revealed that the GABA(B) agonist baclofen stimulates GTPgammaS binding in cerebral cortex, with an ED50 of 50microM. This response is blocked by the GABA(B) receptor antagonist CGP 55845A (100nM). In contrast, baclofen-stimulated GTPgammaS binding was not observed in adult spinal cord tissue under similar incubation conditions, or after varying magnesium, calcium, GDP, [35S]GTPgammaS, or membrane concentrations in the assay medium. Stimulation of adult rat spinal cord muscarinic receptors did result in a concentration-related increase in [35S]GTPgammaS binding. Baclofen-stimulated GTPgammaS binding in adult spinal cord did not appear after peripheral inflammation, despite significant increases in GABA(B) subunit mRNA levels. As opposed to adult, appreciable GTPgammaS binding was observed in membranes prepared from spinal cords of rats within the first 14 days of postnatal development, suggesting that GABA(B) receptor function in the rat spinal cord is developmentally regulated. The results indicate that GABA(B) receptors may not be coupled to G-proteins in the adult rat spinal cord, or couple in a way that differs from that in newborns or adult cerebral cortex.  相似文献   

9.
Summary 1. The developing spinal cords of bullfrogs and transected cords of stage IV tadpoles were subjected to two-dimensional gel electrophoresis and histological analysis. During development, the level of actin,-tubulin or-tubulin in the 7–10th spinal segments increased with time and reached a maximum around stage XIII followed by a decrease, as shown from quantitative assay on protein spots of 2-dimensional gels of cord homogenates. In contrast, the level of 68 kD neurofilament subunit (NF68) was low in tadpoles but high in frog.2. Following a complete transection made at the level of the 8th spinal segment, the cord tissue of the lesion zone degenerated; regeneration from each cut end then occurred, which lengthened for approximate 0.35 mm by 28 days after transection. The content of actin,-tubulin and-tubulin in the cord within 1–2 mm of the transection site was elevated to 124–192% of control values 7–28 days post-transection, whereas NF68 declined to near non-detectable extent.3. The regeneration of each cord stump included outgrowth of neuroepithelial cells and nerve fibers, reconstituting a newly regenerated cord segment. Ultrastructural examination revealed that features of the regrowth of fibers and guidance of neuroepithelial cells to the axonal growth resembled that seen in the developing cord. Thus the biochemical and morphological data support that the regeneration of the nervous system recaptulates its developmental events, providing evidence for molecular mechanisms underlying central axonal regeneration.  相似文献   

10.
Nociceptive responses to altered GABAergic activity at the spinal cord   总被引:5,自引:0,他引:5  
GABA agonists and antagonists were injected intrathecally at the spinal cord, to determine their effect on nociceptive thresholds. Tactile stimulation, applied against the flank by a medium diameter von Frey fiber (5.5 g force), elicited distress vocalizations after, but not before injection of the GABA antagonists, bicuculline MI or picrotoxin (0.25 and 1 microgram dosages). Vocalization threshold to tail shock was significantly reduced by bicuculline MI or picrotoxin. Tail flick withdrawal latency from radiant heat was not altered by GABA antagonists. The GABA agonist, muscimol, significantly elevated vocalization threshold to tail shock at a 5 micrograms dose. At a lower dose level (1 microgram), muscimol significantly reduced vocalization threshold to tail shock. Tail flick latency was significantly prolonged by the 5 micrograms dose of muscimol; however, flaccid paralysis of the hind limbs was also evident. Nociceptive thresholds were not altered by GABA or saline injection. These findings indicate that GABAergic activity contributes to the tonic modulation of nociception at the spinal cord.  相似文献   

11.
gamma-Aminobutyric acid (GABA) receptor/channel rho 1 subunits are important components in inhibitory pathways in the central nervous system. However, the precise locations and roles of these receptors in the central nervous system are unknown. We studied the expression localization of GABA receptor/channel rho 1 subunit in mouse spinal cord and dorsal root ganglia (DRG). The immunohistochemistry results indicated that GABA receptor/channel rho 1 subunits were expressed in mouse spinal cord superficial dorsal horn (lamina I and lamina II) and in DRG. To understand the functions of the GABA receptor/channel rho 1 subunit in these crucial sites of sensory transmission in vivo, we generated GABA receptor/channel rho 1 subunit mutant mice (rho 1-/-). GABA receptor/channel rho 1 subunit expression in the rho 1-/- mice was eliminated completely, whereas the gross neuroanatomical structures of the rho 1-/- mice spinal cord and DRG were unchanged. Electrophysiological recording showed that GABA-mediated spinal cord response was altered in the rho 1-/- mice. A decreased threshold for mechanical pain in the rho 1-/- mice compared with control mice was observed with the von Frey filament test. These findings indicate that the GABA receptor/channel rho 1 subunit plays an important role in modulating spinal cord pain transmission functions in vivo.  相似文献   

12.
Sharma HS  Sjöquist PO 《Amino acids》2002,23(1-3):261-272
Summary.  The involvement of the excitatory amino acid glutamate and the inhibitory amino acid gamma-amino butyric acid (GABA) in the pathophysiology of spinal cord injury is not known in details. This investigation is focused on the role of glutamate and GABA in a rat model of spinal cord trauma using immunohistochemistry. Spinal cord injury produced by a longitudinal incision of the right dorsal horn of the T10–11 segments resulted in profound edema and cell damage in the adjacent T9 segment at 5 h. Pretreatment with H-290/51 (50 mg/kg, p.o.), a potent antioxidant compound, effectively reduced the blood-spinal cord barrier (BSCB) permeability, edema formation and cell injury following trauma. At this time, untreated traumatised rats exhibited a marked increase in glutamate immunoreactivity along with a distinct decrease in GABA immunostaining in the T9 segment. These changes in glutamate and GABA immunoreactivity in traumatised rats were considerably attenuated by pretreatment with H-290/51. These results suggest that (i) oxidative stress contributes to alterations in glutamate and GABA in spinal cord injury, (ii) glutamate and GABA are important factors in the breakdown of the BSCB, edema formation and cell changes, and (iii) the antioxidant compound H-290/51 has a potential therapeutic value in the treatment of spinal cord injuries. Received July 3, 2001 Accepted August 6, 2001 Published online July 31, 2002  相似文献   

13.
The ventromedial medulla (VM), subdivided in a rostral (RVM) and a caudal (CVM) part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH) for glycine transporter 2 (GlyT2) and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA) neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM) of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%). After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%), and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%). In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC) throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.  相似文献   

14.
The aim of this study was to determine the effect of chronic undernutrition on the content and release of γ-amino butyric acid (GABA) and glutamate (GLU) transmitters in the rat spinal cord. The release of [3H]-GABA and [3H]-GLU was determined by radioactive liquid scintillation techniques, and the concentrations of GABA and GLU in spinal cord preparations from control and undernourished young rats (50–60 days old) were measured by reverse-phase HPLC. The GABA and GLU contents in the lumbar spinal dorsal horn (L6 segment) were significantly lower in undernourished rats relative to control rats (22.2 ± 3.7 and 10.7 ± 1.9 %, respectively; P < 0.05). Spinal cord blocks from undernourished animals also showed lower rates of [3H]-GABA and [3H]-GLU release than controls (27.6 ± 3.5 and 12.8 ± 2.5 %, respectively; P < 0.01). We propose that the decreases in GLU content and release are consistent with a reduced activation of either afferent fibers, spinal glutaminergic neurons, or both. Furthermore, we propose that the decreased content and release of GABA in undernourished animals are related to a depression in pre- and post-synaptic inhibition. In addition, we hypothesize that the reductions in GABA content and release serve as compensatory mechanisms to counterbalance decreases in sensory transmission and GLU content in the spinal cord of the chronically undernourished rat.  相似文献   

15.
Elevated spinal extracellular γ-aminobutyric acid (GABA) levels have been described during spinal cord stimulation (SCS)-induced analgesia in experimental chronic peripheral neuropathy. Interestingly, these increased GABA levels strongly exceeded the time frame of SCS-induced analgesia. In line with the former, pharmacologically-enhanced extracellular GABA levels by GABAB receptor agonists in combination with SCS in non-responders to SCS solely could convert these non-responders into responders. However, similar treatment with GABAA receptor agonists and SCS is known to be less efficient. Since K+ Cl cotransporter 2 (KCC2) functionality strongly determines proper GABAA receptor-mediated inhibition, both decreased numbers of GABAA receptors as well as reduced KCC2 protein expression might play a pivotal role in this loss of GABAA receptor-mediated inhibition in non-responders. Here, we explored the mechanisms underlying both changes in extracellular GABA levels and impaired GABAA receptor-mediated inhibition after 30 min of SCS in rats suffering from partial sciatic nerve ligation (PSNL). Immediately after cessation of SCS, a decreased spinal intracellular dorsal horn GABA-immunoreactivity was observed in responders when compared to non-responders or sham SCS rats. One hour later however, GABA-immunoreactivity was already increased to similar levels as those observed in non-responder or sham SCS rats. These changes did not coincide with alterations in the number of GABA-immunoreactive cells. C-Fos/GABA double-fluorescence clearly confirmed a SCS-induced activation of GABA-immunoreactive cells in responders immediately after SCS. Differences in spinal dorsal horn GABAA receptor-immunoreactivity and KCC2 protein levels were absent between all SCS groups. However, KCC2 protein levels were significantly decreased compared to sham PSNL animals. In conclusion, reduced intracellular GABA levels are only present during the time frame of SCS in responders and strongly point to a SCS-mediated on/off GABAergic release mechanism. Furthermore, a KCC2-dependent impaired GABAA receptor-mediated inhibition seems to be present both in responders and non-responders to SCS due to similar KCC2 and GABAA receptor levels.  相似文献   

16.
In the isolated frog spinal cord perfused with kainic acid (KA, 5 X 10(-4) M) containing Ringer's solution, within 2 hr there were increases in the amplitude of the dorsal root depolarization, as induced by the GABA-agonists. KA perfusion produced increases in the specific binding of [3H]muscimol to crude synaptic membranes and incubation with KA for 3 hr did not increase [3H]muscimol binding. [3H]GABA was released from KA-treated spinal cord slices in the presence of high K+. KA-induced supersensitivity of the dorsal root to GABA may relate to direct actions on primary afferent terminals and not to denervation of GABAergic neurons.  相似文献   

17.
The kinetic constants for 4-aminobutyrate: 2-oxoglutarate aminotransferase (GABA-trans-aminase) and succinate-semialdehyde: NAD+ oxidoreductase (SSA-DH) have been determined using rat brain homogenate. The Michaelis constants for GABA-T at saturated substrate concentrations were calculated to be Kgaba= 1.5 mM, K2-OG= 0.25 mM, KGLU= 620 μM, and KSSA= 87 μm. The Vmax for the reaction using GABA and 2-oxoglutarate (2-OG) as substrates (forward reaction) was found to be 35.2 μmol/ These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/gh and 167 pmol/g These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated. The kinetics of GABA-T have been shown to be consistent with a Ping Pong Bi Bi mechanism. Substrate inhibition of the forward reaction, through formation of a dead-end complex, was found to occur with 2-OG (Ki 3.3 mM), whereas GABA was found to be a product inhibitor of the reverse reaction (Ki= 0.6 mM). Using the appropriate Haldane relationship, a Keq of 0.04 for GGBA-T was found, indicating that the reaction was strongly biased towards GABA. For SSA-DH, the Km of SSA was determined (9.1 μM) and the Vmax was 27.5 μmol/ These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated. h. The effect of di-n-propylacetate (DPA) on both GABA-T and SSA-DH was measured. DPA inhibited SSA-DH competitively with respect to SSA, giving a Ki of 0.5 mM. GABA-T was only slightly inhibited. The Ki of DPA for the forward reaction was 23.2 mM with respect to GABA, which was 40-50 times higher than that for SSA-DH. For the reverse reaction the Ki of DPA was found to be nearly the same (15.2 mM with respect to Glu and 22.9 mM with respect to SSA). These results suggest that GABA accumulation in the brain, after administration of DPA in vivo, is caused by SSA-DH inhibition. Two mechanisms are indicated by the data. (1) The higher level of SSA, which results from inhibition of SSA-DH, initiates the reverse reaction of GABA-T, thus increasing the level of GABA via conversion of SSA. (2) The degradation of GABA is inhibited by SSA, since SSA has a strong inhibitory effect on the forward reaction, as calculated from the present data.  相似文献   

18.
Sensitivity to glutamate, aspartate, glycine and GABA was examined in giant interneurons of the lamprey spinal cord.1. The membrane potentials evoked by iontophoretic application decayed with varied time constants specific to amino acids: 2.5 sec for glutamate, 6.3 sec for glycine and 10.3 sec for GABA. li|2. Bath-applied amino acids reduced the input resistance by varying degrees; when glutamate effect was taken as 1, relative effects of aspartate, glycine and GABA were 0.28, 40.5 and 12.3, respectively.3. Glutamate sensitivity was fairly uniform in both the soma and the dendrites. Glycine sensitivity, as well as GABA, was high in the soma and declined steeply along the dendrites by iontophoresis.  相似文献   

19.
The transected lumbar spinal cord of lizards was studied for its ability to recover after paralysis. At 34 days post-lesion about 50% of lizards were capable of walking with a limited coordination, likely due to the regeneration of few connecting axons crossing the transection site of the spinal cord. This region, indicated as “bridge”, contains glial cells among which oligodendrocytes and their elongation that are immunolabeled for NOGO-A. A main reactive protein band occurs at 100–110 kDa but a weaker band is also observed around 240 kDa, suggesting fragmentation of the native protein due to extraction or to physiological processing of the original protein. Most of the cytoplasmic immunolabeling observed in oligodendrocytes is associated with vesicles of the endoplasmic reticulum. Also, the nucleus is labeled in some oligodendrocytes that are myelinating sparse axons observed within the bridge at 22–34 days post-transection. This suggests that axonal regeneration is present within the bridge region. Immunolabeling for NOGO-A shows that the protein is also present in numerous reactive neurons, in particular motor-neurons localized in the proximal stump of the transected spinal cord. Ultrastructural immunolocalization suggests that NOGO is synthesized in the ribosomes of these neurons and becomes associated with the cisternae of the endoplasmic reticulum, probably following a secretory pathway addressed toward the axon. The present observations suggest that, like for the regenerating spinal cord of fish and amphibians, also in lizard NOGO-A is present in reactive neurons and appears associated to axonal regeneration and myelination.  相似文献   

20.
Glycine and GABA play the role of inhibitory transmitters in the lamprey spinal cord. The mechanisms of action of both amino acids to the membrane receptors producing the postsynaptic inhibition as well as role and mechanism of GABA action producing the presynaptic inhibition are considered in this paper. The data concerned with morphological substrates of both type inhibitions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号