首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to establish an experimental model, previously used in cat, for studying tachykinin release from the rat spinal cord in vivo and to compare the results with those obtained in vitro. Stimulation with pulses of 40 mM potassium or 10 microM capsaicin in the spinal cord superfusion fluid increased the release of substance P (SP)- and neurokinin A (NKA)-like immunoreactivity (LI) both in vivo and in vitro. The amounts of SP-LI and NKA-LI released by potassium in vitro were 1.02 +/- 0.12 and 1.17 +/- 0.22 fmol/mg tissue, respectively. Also the ratio between the amounts released by two consecutive potassium stimulations were similar for SP-LI and NKA-LI. Reversed-phase high performance liquid chromatography of the NKA-LI released in vitro by potassium or capsaicin revealed a major immunoreactive component coeluting with synthetic NKA. Despite the use of highly sensitive radioimmunoassays, basal release of SP-LI and NKA-LI was found only in 9 of 31 in vivo experiments. In these, peripheral electrical stimulation of the sciatic nerves (50 Hz, 50 V and 0.05 ms or 10 Hz, 10 V and 5 ms) induced an increase of the SP-LI and NKA-LI levels in the superfusates. This increase persisted for more than 40 min after a 2 min stimulation. In most experiments, however, no SP-LI or NKA-LI could be detected in the superfusates, neither at basal conditions nor following electrical nerve stimulation. Similarly, no release of SP-LI could be detected in response to various noxious mechanical, thermal or chemical stimuli applied to the skin. The present results demonstrate that the superfused rat spinal cord may be used to study in vivo release of tachykinins in response to intense chemical stimulation of the entire spinal cord. However, the method seems to be less suitable for studies of tachykinin release in response to electrical activation engaging only a few spinal segments or in response to natural noxious stimuli. The results obtained in vitro suggest that SP and NKA are released in equimolar amounts from the spinal cord upon stimulation with potassium.  相似文献   

2.
We studied the effects of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) inhibition on the airway responses and the recovery of endogenously released substance P- and neurokinin A-like immunoreactivities (SP-LI and NKA-LI) after tracheal injection of capsaicin in isolated guinea pig lungs superfused through the trachea. Capsaicin in doses from 10(-10) to 10(-7) mol induced a dose-dependent increase in airway opening pressure and release of SP-LI and NKA-LI. Airway opening pressure changes and the recovery of SP-LI and NKA-LI were significantly greater in lungs superfused with the NEP inhibitor SCH 32615 than in control lungs. ACE inhibition with captopril did not increase the mechanical response or the recovery of SP-LI compared with lungs not receiving captopril. In lungs from guinea pigs pretreated with high doses of capsaicin 7-10 days before study, a regimen designed to deplete endogenous tachykinins, there was a significant decrease in the content and release of NKA-LI and SP-LI. There were no detectable airway effects of acute capsaicin infusion even after doses of 10(-5) mol. Because NEP is important in modulating the airway effects of endogenously released tachykinins after tracheal infusion of capsaicin, but ACE is not, it seems likely that tracheal administration of capsaicin releases tachykinins from epithelial rather than endothelial loci.  相似文献   

3.
An antiserum raised against neurokinin A has been used to demonstrate storage and release of neurokinin A-like immunoreactivity by carcinoid tumours. The antiserum showed reactivity towards members of the tachykinin family of polypeptides in the order: neurokinin A greater than eledoisin greater than neurokinin B greater than kassinin greater than substance P greater than physalaemin but the magnitude of the cross-reactivity with substance P and physalaemin was less than 1% of that of neurokinin A. A sensitive (IC50 238 fmol/ml; minimum detectable concentration, 9 fmol/ml) radioimmunoassay was set up using this antiserum. Extracts of metastatic tumour tissue from four patients with a primary carcinoid tumour in the midgut contained both neurokinin A-like immunoreactivity (NKA-LI) and substance P-like immunoreactivity (SP-LI). The concentrations (pmol/g wet weight) of NKA-LI and SP-LI in the tumours were: patient A 210, 201; patient B 2276, 6849; patient C 1198, 834 and patient D 424, 379. Analysis of the tumour extracts by reverse phase HPLC indicated that the NKA-LI was heterogeneous. Under two different conditions of chromatography, one component was eluted with the same retention time as neurokinin A. Two further components were more hydrophobic than neurokinin A but were not eluted with the retention time of neurokinin B. Analysis of these components by gel filtration indicated a molecular weight in the 3000-4000 range suggesting that they may be related to neuropeptide K, an N-terminally extended form of neurokinin A. NKA-LI and SP-LI were undetectable in the plasma of patients A and D but were elevated in patient B (NKA-LI 1005 +/- 114; SP-LI 345 +/- 85 fmol/ml) and patient C (NKA-LI 80 +/- 31; SP-LI 21 +/- 13 fmol/ml).  相似文献   

4.
In the guinea pig isolated perfused lung, we have examined the relationship between the effects of capsaicin and neuropeptide release and the possible existence of an axon reflex arrangement. Bolus injections into the pulmonary artery of capsaicin (1-100 pmol), substance P (10-1,000 pmol), and neurokinin (NK) A (10-100 pmol) produced a concentration-dependent bronchoconstriction, whereas calcitonin gene-related peptide (CGRP, 20-40 nmol) was without effect. Repeated administration of capsaicin at 40- to 60-min intervals was not associated with tachyphylaxis. These data support the presence of a NK2- (or NKA) type of tachykinin receptor in the guinea pig airways. Tetrodotoxin (0.3-3 microM) inhibited the effect of capsaicin, indicating that an axon reflex was operant. Capsaicin increased overflow of CGRP-like immunoreactivity (-LI) and NKA-LI, the latter only during concurrent infusion of the enkephalinase inhibitor phosphoramidon (3 microM). Phosphoramidon also increased overflow of CGRP-LI, suggesting that both NKA and CGRP were catabolized by a similar enzyme. The purine nucleoside adenosine did not cause any detectable overflow of CGRP-LI, indicating that neuropeptides may not be involved in adenosine-evoked bronchoconstriction and that bronchoconstriction per se does not induce neuropeptide overflow. Capsaicin and NKA had only minor effects on buffer flow, whereas substance P produced pulmonary vasoconstriction. These data clearly demonstrate that capsaicin acts via an axon reflex in the guinea pig airways. Supramaximal concentrations of capsaicin are needed to detect neuropeptide overflow, but the possibility exists that released neuropeptides mediate its effects.  相似文献   

5.
Severe postmortem bronchoconstriction has been shown previously in guinea pig lungs and linked to pulmonary blood loss during exsanguination (Lai et al., J. Appl. Physiol. 56: 308-314, 1984). To reexamine this phenomenon we measured postmortem airway function in anesthetized open-chest guinea pigs after sudden circulatory arrest. Animals were divided into 4 groups of 10 and ventilated for 15 min postmortem with different gases: 1) room air, 2) conditioned air, 3) dry 5% CO2-21% O2-74% N2, and 4) conditioned 5% CO2-21% O2-74% N2. In room air-ventilated lungs there was a 50% decrease in dynamic compliance (Cdyn) by 15 min and marked gas trapping compared with control lungs. Conditioning the room air did not attenuate these changes, but when 5% CO2 was added to the conditioned postmortem inspirate, gas trapping was eliminated and the fall in Cdyn was almost abolished. Ventilation with a dry 5% CO2 gas mixture at room temperature resulted in a 31% fall in Cdyn at 15 min but no gas trapping. We conclude that marked abnormalities of airway function occur postmortem in room air-ventilated guinea pig lungs in the absence of pulmonary blood loss. The changes are mainly due to airway hypocarbia, a known cause of bronchoconstriction, but a reduction in Cdyn can also occur if there is marked airway cooling and drying. Acute postmortem airway dysfunction can be prevented in the guinea pig by maintaining normal airway gas composition.  相似文献   

6.
To further examine the role that substance P plays in initiating the observed massive postmortem bronchoconstriction in guinea pig lungs and to explore the role of neural reflex in this airway spasm, six groups of animals were employed: control (n = 6), morphine (n = 6), substance P (n = 5), chronic capsaicin pretreatment + substance P (n = 5), tetrodotoxin (TTX) + acute capsaicin (n = 4), and chlorisondamine + acute capsaicin (n = 5). Pressure-volume curves were performed prior to and following the initiation of artificial pulmonary perfusion with 1% bovine serum albumin and 5% dextran in Tyrode's solution. A decrease in inflation volume (the lung volume between transpulmonary pressure of 0 and 30 cmH2O during inflation) was used as an index of bronchoconstriction. In control animals, inflation volume decreased to 20-30% of the base-line value at 15-30 min of perfusion, indicating massive bronchial constriction during this time period. Morphine (an agent inhibiting substance P release) significantly attenuated the spasm, whereas the presence of substance P in the perfusate markedly enhanced the constriction. Depletion of endogenous substance P by chronic capsaicin pretreatment did not affect exogenous substance P-induced spasm. Acute capsaicin-induced bronchoconstriction was significantly attenuated by TTX but was not affected by the ganglionic blocking agent, chlorisondamine. These data suggest that substance P initiates the massive postmortem bronchoconstriction in guinea pig lungs and that substance P is released by local stimulation of sensory nerve endings via axonal reflex.  相似文献   

7.
To examine endogenous factors affecting the development of the massive bronchoconstriction in the postmortem guinea pig lung, 58 anesthetized open-chest animals were divided into three groups: 1) exsanguination only (n = 13), 2) pulmonary perfusion with 5% dextran and 1% bovine serum albumin (BSA) in Tyrode's solution (Ca2+ perfusate) (n = 21), and 3) pulmonary perfusion with 5% dextran and 1% BSA in saline (Ca2+-free perfusate) (n = 24). These groups were further divided into several subgroups according to treatments: 1) substance P depletion by chronic administration of capsaicin, 2) acute capsaicin treatment to release substance P, 3) dazoxiben treatment to block endogenous synthesis of thromboxane A2, 4) diethylcarbamazine treatment to eliminate leukotriene (LT) synthesis, and 5) FPL 55712 treatment to antagonize actions of LT. Vital capacity from the deflation pressure-volume (PV) curve of the lung was used as the indicator of bronchoconstriction. Most PV curves were performed for 30 min following exsanguination or artificial perfusion. Ca2+-free perfusate enhanced the airway spasm at 5-10 min, but the spasm disappeared gradually after 10 min. Substance P depletion significantly decreased (P less than 0.01) the bronchial constriction at 20-30 min, whereas substance P release induced severe airway spasm (P less than 0.01) during the entire study. In addition, FPL 55712 reduced the bronchospasm (P less than 0.05) in Ca2+ perfusate at 30 min. Thus Ca2+ and several endogenous mediators may be involved with the airway spasm of the postmortem guinea pig lung.  相似文献   

8.
A special phenomenon (difficult to inflate and deflate) occurring in the postmortem guinea pig lungs was studied in 40 animals. Thirty minutes after excision of the lungs or exsanguination, less than 50% of the lungs could be inflated even at high inflation pressure (34 cmH2O), and most gas was trapped during deflation. The amount of trapped gas volume at 30 min was related to the degree of lung inflation maintained during the 5- to 30-min period after exsanguination. Since stiffness of the lung tissue was unlikely to explain the phenomenon, we speculated airway obstruction as the major factor. No foam or bubbles were found in larger airways and we thus hypothesized that the obstruction was due to bronchoconstriction. This was confirmed histologically in that the lumina of both bronchi and bronchioles were constricted. The latent period to the onset of this constriction was short (approximately 5 min). It was not associated with O2 availability but was delayed an additional 15 min by a thromboxane inhibitor (dazoxiben). Neither maintaining lung temperature at 37 degrees C nor vagotomy and/or cervical transection prevented the constriction. Without exsanguination, onset of bronchoconstriction was delayed by about 1 h. We conclude that postmortem bronchoconstriction may be caused by release of an endogenous constrictor agent.  相似文献   

9.
The effects of the neutral metalloendopeptidase inhibitor, thiorphan, and the angiotensin-converting enzyme inhibitor, captopril, on the changes in airway opening pressure (PaO), pulmonary arterial pressure (Ppa), and weight induced by intravascular administration of substance P were examined in isolated perfused and ventilated guinea pig lungs. Administration of 1 nmol substance P without enzyme inhibitors resulted in a significant (P less than 0.01) increase in the peak PaO during ventilation from 12.4 +/- 0.5 to 22.4 +/- 2.2 cmH2O; there were small statistically insignificant increases in Ppa. The changes in PaO peaked approximately 30 s after peptide infusion and returned to preinfusion values by 5 min. In the presence of combined thiorphan (5.6 microM) and captopril (7.7 microM) the magnitude of the Pao response at 30 s (41.5 +/- 3.8 cmH2O) and at 5 min (40.0 +/- 3.6 cmH2O) after peptide infusion was significantly greater than in control lungs (P less than 0.05). The effects of substance P on PaO in the presence of the various inhibitors were not related to amount of peptide recovered in the lung effluent. Reverse-phase high-performance liquid chromatographic analysis of [3H]Pro2,4 substance P perfused through the lungs demonstrated that the major products were consistent with intact substance P, substance P 1-4, and smaller peptides; only minor amounts of products consistent with substance P 1-7, 1-9, or 3-11 were identified. These data support our previous findings showing that the physiological effects of intravascular substance P are limited by peptide degradation; the latter process, once begun, proceeds rapidly to nearly complete peptide degradation.  相似文献   

10.
Slices of human iris or ciliary body, obtained post-mortem (8-12 h after death, n = 5), were superfused in vitro with capsaicin (10 microM) and the immunoreactivity for substance P (SP-LI) or calcitonin gene-related peptide (CGRP-LI) was measured in the effluent. In the iris and in the ciliary body CGRP-LI was 3.71 +/- 0.74 pmol/g and 3.01 +/- 0.55 pmol/g and SP-LI was 6.68 +/- 0.75 pmol/g and 6.55 +/- 0.84 pmol/g, respectively. A first exposure to capsaicin increased the CGRP-LI outflow from the ciliary body (427 +/- 46 fmol/g/30 min), whereas a second challenge with the drug 30 min later, failed to significantly enhance the CGRP-LI outflow (21.8 +/- 15.6 fmol/g/30 min). Likewise, the capsaicin-evoked increase in CGRP-LI outflow from the iris slices (472 +/- 62 fmol/g/30 min) was no longer observed at the second drug administration (38.4 +/- 12.8 fmol/g/30 min). Capsaicin failed to increase the SP-LI outflow from either the iris or the ciliary body. Reverse phase HPLC analysis of CGRP-LI indicated that authentic CGRP was contained in the tissue and in the superfusate collected during exposure to capsaicin. The present results show that in the human iris and ciliary body, capsaicin releases CGRP possibly contained in terminals of sensory nerves.  相似文献   

11.
We tested the hypothesis that exogenous substance P (SP) could enhance rat aortic permeability to plasma albumin. Fluorescein-labeled bovine serum albumin was used as the tracer. In vivo normalized albumin mass transfer rates (x10(-8) cm/sec) were 9.16 +/- 1.73, 14.20 +/- 2.76 (P less than 0.05) and 20.31 +/- 3.31 (P less than 0.001) for groups infused i.v. with 0.01 N acetic acid vehicle, 7.4 pmol and 0.74 pmol SP/kg/min for 5 min, respectively. No significant differences from the control group were found in rats receiving 150 pmol, 74 pmol nor 74 fmol SP/kg/min for 5 min. The results indicate that aortic permeability dynamics for plasma albumin can be enhanced by pmol levels of the tachykinin SP.  相似文献   

12.
The preprotachykinin-A gene, the common gene of mRNAs encoding both substance-P (SP) and neurokinin-A (NKA), was shown to be expressed in Sprague-Dawley rat thymus by detection of specific mRNA in gel-blot analyses. In situ hybridization revealed dispersed PPT-A-labeled cells in sections from rat thymus, with a concentration of grains over a subpopulation of cells in the thymic medulla. Also, neuropeptide-Y mRNA-expressing cells were found in the rat thymus, primarily in the thymic medulla. Rat thymic extracts contained SP-like immunoreactivity (SP-LI), and the major part of the immunoreactivity coeluted with authentic SP and SP sulfoxide standards. SP-LI was also detected in human thymus, which contained between 0.09-0.88 ng SP-LI/g wet wt. Evidence for translation of preprotachykinin-A mRNA in the rat thymus was obtained from the demonstration of NKA-LI in thymic cells with an epithelial-like cell morphology. Combined with previous observations on the immunoregulatory roles of tachykinin peptides and the existence of specific receptors on immunocompetent cells, the demonstration of intrathymic synthesis of NKA suggests a role for NKA-LI peptides in T-cell differentiation in the thymus.  相似文献   

13.
The aim of this study was to determine whether hypocapnia causes bronchoconstriction by releasing tachykinins (TKs) from C-afferent nerves in airways. Hypocapnia-induced bronchoconstriction (HIBC) was induced in anesthetized vagotomized guina pigs by ventilating lungs with a heated humidified hypocapnic gas mixture for 15 min after sudden circulatory arrest. The intensity of bronchoconstriction was assessed by calculating changes in dynamic compliance and by measuring the relaxation lung volume at the completion of experiments. Visualization of the airways by tantalum bronchography showed constriction of segmental bronchi with relative sparing of more proximal airways. Hypocapnia-induced bronchoconstriction was prevented by prior administration of salbutamol aerosol. Three experimental interventions were used to investigate the role of TKs in HIBC: 1) repeated capsaicin injections to deplete airway sensory nerves of TKs, 2) treatment with phosphoramidon, an inhibitor of enkephalinase, the main enzyme responsible for TK inactivation, and 3) topical airway anesthesia. Capsaicin pretreatment markedly attenuated the hypocapnia-induced changes in dynamic compliance (P less than 0.0005) and relaxation lung volume (P less than 0.0002), whereas phosphoramidon augmented these changes (P less than 0.02, P less than 0.03, respectively). Topical anesthesia of airways with lignocaine postponed the onset of bronchoconstriction, whereas the longer-acting, more lipid-soluble local anesthetic, bupivacaine, almost completely prevented HIBC. We conclude that, in the guinea pig lung, HIBC is mediated by TKs that are released after the activation of bronchial axonal reflexes.  相似文献   

14.
To determine whether neutral endopeptidase (NEP), also called enkephalinase (EC 3.4.24.11), modulates the effects of exogenous and endogenous tachykinins in vivo, we studied the effects of aerosolized phosphoramidon, a specific NEP inhibitor, on the responses to aerosolized substance P (SP) and on the atropine-resistant response to vagus nerve stimulation (10 V, 5 ms for 20 s) in guinea pigs. SP alone (10(-7) to 10(-4) M; each concentration, 7 breaths) caused no change in total pulmonary resistance (RL, P greater than 0.5). Phosphoramidon (10(-4) M, 90 breaths) caused no change either in base-line RL (P greater than 0.5) or in the response to aerosolized acetylcholine (P greater than 0.5). However, in the presence of phosphoramidon, SP (7 breaths) produced a concentration-dependent increase in RL at concentrations greater than or equal to 10(-5) M (P less than 0.001). Phosphoramidon (10(-7) to 10(-4) M; each concentration, 90 breaths) induced a concentration-dependent potentiation of SP-induced bronchoconstriction (10(-4) M, 7 breaths; P less than 0.01). Vagus nerve stimulation (0.5-3 Hz), in the presence of atropine, induced a frequency-dependent increase in RL (P less than 0.001). Phosphoramidon potentiated the atropine-resistant responses to vagus nerve stimulation (P less than 0.001) at frequencies greater than 0.5 Hz. The tachykinin antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-substance P abolished the effects of phosphoramidon on the atropine-resistant response to vagus nerve stimulation (2 Hz, P less than 0.005). NEP-like activity in tracheal homogenates of guinea pig was inhibited by phosphoramidon with a concentration producing 50% inhibition of 5.3 +/- 0.8 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
E Aasum  T S Larsen 《Cryobiology》1999,38(3):243-249
We examined the effect of hypothermia and rewarming on myocardial function and calcium control in Langendorff-perfused hearts from rat and guinea pig. Both rat and guinea pig hearts demonstrated a rise in myocardial calcium ([Ca]total) in response to hypothermic perfusion (40 min, 10 degrees C), which was accompanied by an increase in left ventricular end diastolic pressure (LVEDP). The elevation in [Ca]total was severalfold higher in guinea pig than in rat hearts, reaching 12.9 +/- 0.8 and 3.1 +/- 0.6 micromol.g dry wt-1, respectively. The rise in LVEDP, however, was comparable in the two species: 62.5 +/- 2.5 (guinea pig) and 52.5 +/- 5.1 mm Hg (rat). Following rewarming, [Ca]total remained elevated in guinea pig, whereas a moderate decline in [Ca]total was observed in the rat (13.6 +/- 1.9 and 2.2 +/- 0.3 micromol.g dry wt-1, respectively). Posthypothermic values of LVEDP were also significantly higher in guinea pig compared to rat hearts (42.5 +/- 6.8 vs 20.5 +/- 5.1 mm Hg, P < 0.027). Furthermore, whereas rat hearts demonstrated a 78 +/- 7% recovery of left ventricular developed pressure, there was only a 15 +/- 7% recovery in guinea pig hearts. Measurements of tissue levels of high energy phosphates and glycogen utilization indicated a higher metabolic requirement in guinea pig than in rat hearts in order to oppose the hypothermia-induced calcium load. Thus, we conclude that isolated guinea pig hearts are more sensitive to a hypothermic insult than rat hearts.  相似文献   

16.
Forssman shock is a bronchospastic reaction mounted in guinea pigs on intravenous administration of an antiserum obtained from rabbits immunized against sheep erythrocytes. The involvement of thromboxane receptors in Forssman shock was determined with SQ 30,741, which was characterized as a selective antagonist of these receptors in guinea pig airways in vitro and in vivo. A volume of antiserum producing consistent, sublethal bronchoconstriction was given either alone (control) or 3 min after SQ 30,741 (0.03, 0.3, or 1.0 mg/kg iv) to urethan-anesthetized guinea pigs. In controls, maximum reductions in dynamic compliance (-59 +/- 6%, P less than 0.01) and increases in airways resistance (383 +/- 97%, P less than 0.01) were detected 1 min after antiserum. Both responses were significantly inhibited by SQ 30,741, either partially at 0.03 mg/kg or completely at 0.3 mg/kg. An accompanying thrombocytopenia was not abated by SQ 30,741. In separate experiments, bronchospasm was reduced by aerosol administration of 0.1% SQ 30,741 and completely prevented by aspirin (10 mg/kg iv). When Forssman antiserum was injected in lethal quantities to other guinea pigs, SQ 30,741 (1 mg/kg iv) attentuated only the resistance component of bronchospasm and did not prevent death. These data demonstrate that thromboxane receptor stimulation is a pivotal step in the pulmonary manifestations of sublethal Forssman shock but is less crucial in more severe forms of the reaction.  相似文献   

17.
The effects of nebulized diuretics on citric acid-induced cough and airway obstruction in guinea pigs and capsaicin-induced cough and increase in airway resistance in humans have been studied. Half-maximum inhibition of cough in the guinea pig was produced by 1.3 mM furosemide and 0.25 mM hydrochlorothiazide. Cough was inhibited by 78 +/- 9% by 3 mM furosemide (P less than 0.05) and 89 +/- 11% by 3 mM hydrochlorothiazide (P less than 0.01). At the same time, airway obstruction was inhibited by 50 +/- 9% (P less than 0.001) and 42 +/- 15% (P less than 0.05), respectively. Nebulized furosemide (3 mM) was without effect on the airway obstruction produced by inhaled histamine or acetylcholine in the guinea pigs. Intravenously administered furosemide (270 nmol/kg) did not affect citric acid-induced responses. In humans, aerosolized furosemide (9 mM) and hydrochlorothiazide (3.4 mM) reduced the percent increase in respiratory resistance from 22.1 +/- 3.7 and 15.6 +/- 3.4 to 10.5 +/- 4.9 and 9.4 +/- 3.3%, respectively (P less than 0.05), but were without effect on cough due to capsaicin. Thus both furosemide and hydrochlorothiazide inhibited airway obstruction in the guinea pig and reduced the capsaicin-induced increase in airway resistance in humans. However, whereas coughing was inhibited in the guinea pig, neither drug affected cough in humans. This difference in the action of the loop diuretic and thiazide, which interact differently with Na(+)-K(+)-Cl-transport within the airway mucosa, on the cough and airflow obstruction in guinea pig and humans supports the view that different sensory limbs are involved in these reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Hibernating animals consistently survive prolonged periods of cold with body temperatures near the freezing point. Previous studies have suggested that regulation of calcium influx may be a fundamental cellular mechanism for cold tolerance in hibernating species. The present study was undertaken to compare (i) the calcium dependence of contractility and (ii) [3H]nitrendipine binding in homogenates of ileal longitudinal smooth muscle from the nonhibernating guinea pig (Cavia porcellus) and a hibernator, the ground squirrel (Spermophilus richardsonii). The contractility studies indicate that both the activation threshold for calcium and the concentration-response curve were shifted to the right in ground squirrel when compared with guinea pig. The binding site density in ground squirrel muscle was about an order of magnitude less than in guinea pig (Bmax = 10 +/- 2 (n = 12) and 86 +/- 6 fmol/mg protein (n = 5), respectively). These results indicate that ground squirrel tissues are less sensitive to external calcium and clearly have fewer calcium channels than the smooth muscle of the non-hibernator. The results continue to support the hypothesis that cold tolerance in hibernating species involves calcium homeostatic control mechanisms.  相似文献   

19.
J C Mak  P J Barnes 《Peptides》1988,9(5):957-963
125I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow.  相似文献   

20.
Plasma levels of atrial natriuretic factor (ANP) were examined in 12 patients with liver cirrhosis (6 with ascites) and 6 controls before and after the administration of the infusion of 2000 ml of saline solution per 70 kg of body weight during 2 hours. Basal concentration of ANF tended to be slightly, but nonsignificantly higher in patients with ascitic liver cirrhosis (5.5 +/- 1.3 fmol/ml) than in controls (3.0 +/- 1.0 fmol/ml) and in patients with non-ascitic liver cirrhosis (4.6 +/- 1.3 fmol/ml). Saline administration led to the comparable increase of plasma ANF in ascitic (14.2 +/- 4.0 fmol/ml) and non-ascitic cirrhotics (15.7 +/- 3.7 fmol/ml) and in controls (12.4 +/- 4.3 fmol/ml). The increase of plasma ANF was accompanied by the suppression of plasma renin activity (PRA) and plasma aldosterone (PA) in all groups; in ascitic patients, however, PRA and PA remained above the normal range. While in controls and non-ascitic cirrhotics saline administration led to the increase of urine flow rate /from 0.74 +/- 0.13 to 2.04 +/- 0.44 ml/min, P less than 0.01, in controls; from 0.83 +/- 0.05 to 1.28 +/- 0.07 ml/min, P less than 0.01, in non-ascitic cirrhotics) and urinary sodium excretion (from 110.7 +/- 21.3 to 364.8 +/- 74.4 umol/min, P less than 0.01, in controls; from 125.0 +/- 16.7 to 218.7 +/- 24.3 umol/min, P less than 0.01 in non-ascitic cirrhotics), in patients with ascitic liver cirrhosis neither urine flow rate (from 0.66 +/- 0.1 to 0.72 +/- 0.15 ml/min, n.s.), nor urinary sodium excretion (from 16.7 +/- 9.9 to 54.2 +/- 40.3 umol/min, n.s.) changed significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号