首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Accurate quantitation of thymidylate synthetase activity using a tritium-release assay is dependent upon measurement of only that tritium released from deoxy[5-3H]uridine monophosphate ([3H]dUMP) during the biosynthesis of thymidylate. Removal of remaining [3H]dUMP on completion of the assay by charcoal adsorption and correction for the nonenzymatic release of tritium are necessary. Although over 99% of [3H]dUMP is removed immediately following addition of charcoal, these studies demonstrate that sufficient [3H]dUMP can remain to prevent accurate measurement of low levels of thymidylate synthetase activity. By delaying measurement of radioactivity for at least 24 h following addition of charcoal, this problem is minimized. To account for nonenzymatic release of tritium, a blank containing enzyme extract with omission of ±,l-5,10-methylenetetrahydrofolate is demonstrated to be more effective than the commonly used blank in which water is substituted for enzyme extract. In samples containing 5-fluoro-2′-deoxyuridine monophosphate (FdUMP), a potent inhibitor of thymidylate synthetase activity, an alternative blank containing a high concentration of FdUMP (approximately 1mM) is useful in demonstrating a theoretical maximal or complete inhibition of thymidylate synthetase activity.  相似文献   

2.
Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates   总被引:15,自引:0,他引:15  
We have studied the effects of methotrexate (MTX-Glu1) and the polyglutamate derivatives of methotrexate (MTXPGs) with 2, 3, 4, and 5 glutamyl residues on the catalytic activity of thymidylate synthase purified from MCF-7 human breast cancer cells and on the kinetics of the ternary complex formation by 5-fluoro-2'-deoxyuridine 5'-monophosphate, folate cofactor, and thymidylate synthase. MTX-Glu1 exhibited uncompetitive inhibition of thymidylate synthase when reaction kinetics were analyzed by either double reciprocal plots or a computerized mathematical model based on nonlinear least-squares curve fitting. The Ki for MTX-Glu1 inhibition was 13 microM and the I50 was 22 microM, irrespective of the degree of polyglutamation of the folate. In contrast, the polyglutamated derivatives of MTX all acted as noncompetitive inhibitors. The MTXPGs had 75-300-fold greater potency than MTX-Glu1 as inhibitors of thymidylate synthase catalytic activity, with Ki values from 0.17 to 0.047 microM for MTX-Glu2 to MTX-Glu5, respectively. Neither MTX-Glu1 nor MTXPGs promoted the formation of a charcoal-stable ternary complex with thymidylate synthase and 5-fluoro-2'-deoxyuridine 5'-monophosphate. CH2-H4PteGlu5 (where PteGlu represents pteroylglutamic acid) was found to be 40-fold more potent than CH2-H4PteGlu1 in participating in the formation of a ternary complex, and 10 microM MTX-Glu5 significantly inhibited the formation of a ternary complex containing this folate as cofactor. The inhibition was determined to be due to a reduction in the kon. The potency of this inhibition was markedly greater in the presence of CH2-H4PteGlu1 as compared to CH2-H4PteGlu5. This finding suggests that the degree of interference with complex formation in intact cells would depend on the state of polyglutamation of available folate cofactor. Ternary complex formation with H2PteGlu5 as the folate cofactor was also investigated, and a 50% reduction in complex formation was found in the presence of a 2 microM concentration of MTX-Glu5. These findings have significant implications regarding the mechanism of action of MTX-Glu1 and contribute to an understanding of the complex interactions of MTX-Glu1 and 5-fluorouracil.  相似文献   

3.
The 5-ethynyl-2'-deoxyuridine nucleoside and the 5'-boranomonophosphate nucleotide were synthesized as analogs of 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP), a widely used mechanism-based inhibitor of thymidylate synthase. Synthesis was carried out from protected 5-iodo-2'-deoxyuridine and trimethylsilylacetylene by Sonogashira palladium-catalyzed cross coupling reaction followed by selective phosphorylation and finally boronation.  相似文献   

4.
In this study, cobalamin deficiency was produced in vitro by the use of nitrous oxide, known to inactivate the vitamin. In 14 sets of experiments, normal human lymphocytes stimulated with phytohemagglutinin on day 0 were exposed to nitrous oxide and oxygen on day 2. MeCbl was delivered later to half of the cells. Untreated cells served as a control. On day 3, the cells were harvested, the lymphocytes were lysed, and the obtained extracts were assayed for thymidylate synthetase. In 16 other experiments the same procedure was performed, and the incorporation of radioactive thymidine or deoxyuridine by the intact cells was measured. In additional experiments, a deoxyuridine suppression test of treated and untreated stimulated lymphocytes was also performed. The results indicate that nitrous oxide significantly reduces the activity of thymidylate synthetase and that this reduction is significantly corrected by MeCbl, suggesting a causative relation between the vitamin and the enzyme. However, there was no statistically significant effect of nitrous oxide demonstrated on the nucleoside incorporation nor on the deoxyuridine suppression test.  相似文献   

5.
A line of human lymphocytic leukemia cells (CCRF-CEM) has been obtained which is 140-fold resistant to the potent cell growth inhibitor 5-fluoro-2'-deoxyuridine (FdUrd). The cells were also 11-fold cross-resistant to 5-fluorouracil. In contrast to several previous studies involving FdUrd-resistant mouse cells, thymidylate synthetase levels were not substantially elevated in these FdUrd-resistant human leukemic cells. Thymidine kinase activity was also unchanged in the resistant cells, although the levels of 5-fluoro-2'-deoxyuridylate (FdUMP), the potent inhibitor of thymidylate synthetase, generated at equimolar doses of FdUrd were about 40% lower than in the sensitive cells. Studies of the kinetics of FdUMP binding to thymidylate synthetase isolated from the FdUrd-resistant cells disclosed a considerably higher dissociation constant (Kd = 1.0 X 10(-9) M) for the ternary covalent enzyme . FdUMP . 5,10-methylene tetrahydrofolate complex compared to the value obtained with enzyme from sensitive cells (Kd = 4.4 X 10(-11) M). The thymidylate synthetase from the FdUrd-resistant cells also showed 17-fold weaker binding of 2'-deoxyuridylate, even though the Km value for 2'-deoxyuridylate was 3-fold lower compared to the enzyme from FdUrd-sensitive cells. The turnover number of the altered enzyme was 1.8-fold higher than that for the normal enzyme but the rate constants for the release of FdUMP from the ternary complex, which is also an enzyme-catalyzed reaction, were identical for both enzymes. Electrophoresis of the radiolabeled ternary complexes on nondenaturing gels showed small but reproducible differences in migration rates. These results demonstrate that the mechanism of resistance to FdUrd in this cell line involves an alteration in the target enzyme, thymidylate synthetase, which causes it have a lower affinity for nucleotides.  相似文献   

6.
Mutants of Chinese hamster cells deficient in thymidylate synthetase   总被引:2,自引:0,他引:2  
Stable mutants of Chinese hamster V79 cells deficient in thymidylate synthetase (TS; E.C. 2.1.1.45) have been selected from cultures grown in medium supplemented with folinic acid, aminopterin, and thymidine (FAT). After chemical mutagenesis, the frequency of colonies resistant to the "FAT" medium increased more than 100-fold over the spontaneous frequency. The optimal expression time of the mutant phenotype was 5-7 days after mutagen treatment. The recovery of FAT-resistant colonies in the selective medium was not affected by the presence of wild-type cells at a density below 9,000 cells per cm2. All 21 mutants tested exhibited thymidine auxotrophy; neither folinic acid nor deoxyuridine could support mutant cell growth. There was no detectable TS activity in all 11 mutants so far examined and only about 50% of wild-type activity in three prototrophic revertants, as measured by whole-cell and cell-free enzyme assays. The apparent Michaelis-Menten constant (Km) for deoxyuridine-5'-monophosphate and inhibition constant (Ki) for 5-fluoro-deoxyuridine-5'-monophosphate, measured by whole-cell enzyme assay, appear to be similar for the wild-type and revertant cell lines. Using 5-fluoro-[6-3H]-2'-deoxyuridine 5'-monophosphate as active site titrant, the relative amounts of TS in crude cell extract from the parental, revertant, and mutant cells were shown to exist in a 1:0.5:0 ratio. Furthermore, the enzymes from two revertants were more heat labile than that of V79 cells. These properties, taken together, suggest that the FAT-resistant, thymidine auxotrophic phenotype may be the result of a structural gene mutation at the TS locus. The availability of such a mutant facilitates studies on thymidylate stress in relation to DNA metabolism, cell growth, and mutagenesis.  相似文献   

7.
The lack of a phenotypic alteration of 5-hydroxymethyluracil (hmUra) DNA glycosylase (hmUDG) deficient Chinese hamster V79mut1 cells exposed to DNA-damaging agents known to produce hmUra has raised the question whether there might be DNA substrates other than hmUra for hmUDG. Based on the structural similarity between 5-chlorouracil (ClUra) and hmUra and the observations that 5-chloro-2'-deoxyuridine (CldUrd) induces base excision repair (BER) events, we asked whether hmUDG or some other DNA BER enzyme is responsible for the removal of ClUra from DNA. An in vivo flow cytometry assay with FITC-anti-BrdUrd (which cross-reacts with CldUrd) showed that exogenous CldUrd is incorporated into DNA. However, both in vivo and in vitro experiments indicated that ClUra is not excised from DNA by hmUDG or other DNA glycosylase activities. The absence of removal of ClUra by hmUDG raised the question whether DNA strand breaks occurred subsequent to thymidylate synthase inhibition, leading to deoxyuridine incorporation, followed by cleavage of uracil from DNA by uracil DNA glycosylase (UDG). An in vivo thymidylate synthase activity assay in V79 cells demonstrated that CldUrd treatment inhibits thymidylate synthase as effectively as 5-fluoro-2'-deoxyuridine (FdUrd) treatment. Uracil, a known UDG inhibitor, partially reverses the cytotoxic effects of CldUrd on V79 cells, thus confirming that CldUrd induced cytotoxicity is a result of UDG activity. Our results demonstrated that while CldUrd is not directly repaired from DNA, its cytotoxicity is directly due to the UDG removing uracil subsequent to inhibition of thymidylate synthase by CldUMP.  相似文献   

8.
We have investigated the mechanism by which reduced folates, such as folinic acid, enhance the cytotoxicity of fluoropyrimidines in L1210 mouse leukemic cells. Exposure of L1210 cells to folinic acid resulted in expansion of intracellular pools of 5,10-CH2-H4PteGlun, delayed the reappearance of catalytically active thymidylate synthase (TS) following 5-fluoro-2'-deoxyuridine exposure, and stabilized inhibited TS complexes over the same concentration range that augmented the cytotoxic effects of fluorodeoxyuridine and 5-fluorouracil. The data showed that, in intact L1210 cells, fluorodeoxyridylate behaves as an inhibitor whose complexes with TS dissociated with a biologically significant rate. However, these complexes become functionally irreversible in cells incubated with high levels of folinic acid. It was also found that bound and total TS levels increased in cells treated with fluorodeoxyuridine to an extent that substantially exceeded the increase in protein content per cell under the same conditions. These results are in accord with the concept that folinic acid augments the effects of the fluoropyrimidines by expansion of cellular 5,10-CH2-H4PteGlun pools with subsequent stabilization of ternary complexes among 5-fluoro-2'-deoxyuridine 5'-monophosphate, TS, and 5,10-CH2-H4PteGlun. In light of the accumulation of TS that occurs following exposure to fluoropyrimidines, this stabilization may be needed for efficient tumor cell killing by these agents.  相似文献   

9.
We have studied the roles of 5,10-methylenetetrahydrofolate (5,10-methylene-H4PteGlu) depletion and dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo thymidylate synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Using both a high pressure liquid chromatography system and a modification of the 5-fluoro-2'-deoxyuridine-5'-monophosphate radioenzymatic binding assay, we determined that the 5,10-methylene-H4PteGlu pool is 50-60% depleted in human MCF-7 breast cancer cells following exposure to 1 micron MTX for up to 21 h. Similar alterations in the 5,10-methylene-H4PteGlu pools were obtained when human promyelocytic HL-60 leukemia cells and normal human myeloid precursor cells were incubated with 1 micron MTX. The H2PteGlu pools within the MCF-7 cells increased significantly after 15 min of 1 micron MTX exposure, reaching maximal levels by 60 min. Thymidylate synthesis, as measured by labeled deoxyuridine incorporation into DNA, decreased to less than 20% of control activity within 30 min of 1 micron MTX exposure. The inhibition of thymidylate synthesis coincided temporally with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of thymidylate synthase. Furthermore, inhibition of this pathway was associated in a log-linear fashion with the intracellular level of dihydrofolate. These studies provide further evidence that depletion of the thymidylate synthase substrate 5,10-methylene-H4PteGlu is inadequate to account completely for diminished thymidylate synthesis resulting from MTX treatment. Our findings suggest that acute inhibition of de novo thymidylate synthesis is a multifactorial process consisting of partial substrate depletion and direct enzymatic inhibition by H2PteGlu polyglutamates.  相似文献   

10.
The activity of thymidylate synthetase in the liver of the ddY strain male mouse increased transitorily according to the increase in tumor cell number at maximum 7-9 days after ip transplantation of Ehrlich ascites tumor. The enzyme was able to be purified from the tumor host mouse liver or from the normal mouse liver in the same manner as from tumor cells using Affi-Gel blue and methotrexate-Sepharose 4B affinity column chromatography. The three enzyme preparations obtained were purified at 27,000-38,000-, and 8,000-fold, and yielded total activities of 11, 3, and 16% of these homogenates, respectively. These preparations were similar in molecular weight to the whole enzyme (67,000) and its subunit (34,000), optimum pH, and Km values either for deoxyuridine 5'-monophosphate or tetrahydrofolate in the presence of formaldehyde. Furthermore, the amount of 5-fluoro-2'-deoxyuridine 5'-monophosphate forming the ternary complex with the enzyme and tetrahydrofolate paralleled the enzyme activities in the cytosol fractions of the three tissues. The characteristics of the tumor host liver enzyme were similar to those of the proliferating tissues, the Ehrlich ascites tumor.  相似文献   

11.
Summary In this study, cobalamin deficiency was produced in vitro by the use of nitrous oxide, known to inactivate the vitamin. In 14 sets of experiments, normal human lymphocytes stimulated with phytohemagglutinin on day 0 were exposed to nitrous oxide and oxygen on day 2. McCbl was delivered later to half of the cells. Untreated cells served as a control. On day 3, the cells were harvested, the lymphocytes were lysed, and the obtained extracts were assayed for thymidylate synthetase. In 16 other experiments the same procedure was performed, and the incorporation of radioactive thymidine or deoxyuridine by the intact cells was measured. In additional experiments, a deoxyuridine suppression test of treated and untreated stimulated lymphocytes was also performed. The results indicate that nitrous oxide significantly reduces the activity of thymidylate synthetase and that this reduction is significantly corrected by McCbl, suggesting a causative relation between the vitamin and the enzyme. However, there was no statistically significant effect of nitrous oxide demonstrated on the nucleoside incorporation nor on the deoxyuridine suppression test.An abstract of this article appeared in Blood 62: Suppl 1 37a, 1983.  相似文献   

12.
Y Oda 《Mutation research》1987,183(2):103-108
The inducibility of SOS responses by 5-fluorouracil (5-FU), which has been used as an antitumor drug, was studied in Escherichia coli cells which have different DNA repair capacities for UV lesions. Expression of the umuC gene was apparently induced by 5-FU in the wild-type and uvrA strains, but not in lexA and recA strains. The inducibility of the umuC gene by 5-FU, the metabolite of which inhibits thymidylate synthetase, was abolished in cultures containing deoxythymidine monophosphate which is converted from deoxyuridine monophosphate by thymidylate synthetase. These results suggest that 5-FU may exert its SOS inducibility by inhibiting thymidylate synthetase and then disturbing DNA metabolism but not by incorporating 5-FU residues into RNA. Further, 5-FU weakly induced mutations in E. coli.  相似文献   

13.
Serum levels of 5-fluoro-2'-deoxyuridine in cancer treated patients were measured by gas chromatography mass spectrometry under chemical ionization conditions; 1-(2-deoxy-beta-D-lyxofuranosyl)-5-fluorouracil (3'-epi-5-fluoro-2'-deoxyuridine) was used as an internal standard. The drug and internal standard were quantitatively isolated from the serum sample by a mini-column anion exchange method and the extract permethylated using potassium-tert-butoxide in dimethylsulphoxide and methyl iodide. The derivatized nucleosides were then re-extracted from the reaction mixture and analysed on a glass capillary column coated with Superox-4. The column was coupled directly to the chemical ionization source of the mass spectrometer; NH3 was used as the reagent gas. The gas chromatographic effluent was monitored at m/z 289, the [MH]+ ion of the N,O-permethyl derivatives of 5-fluoro-2'-deoxyuridine and the internal standard. Recovery of 5-fluoro-2'-deoxyuridine from serum in the 0-1 microgram ml-1 concentration range averaged 93 +/- 2% (SD); a linear detector response was observed up to 50 ng 5-fluoro-2'-deoxyuridine ml-1. At the 10 ng ml-1 level, a within-run assay precision of 10% (CV) (n = 5) was found, while a detection limit of about 1 ng 5-fluoro-2'-deoxyuridine ml-1 of serum was attained. The method was applied to the measurement of disappearance curves of 5-fluoro-2'-deoxyuridine in the serum of treated patients.  相似文献   

14.
dUDP-GlcNAc, the 2'-deoxyribosyl analogue of UDP-GlcNAc, has been identified in human lymphoid cells treated with the dihydrofolate reductase inhibitor, methotrexate. It was shown previously that elevation of dUTP accompanies the gross expansion in intracellular deoxyuridylate pools that results from the methotrexate-induced block in thymidylate synthetase activity (1). dUDP-GlcNAc presumably is formed from dUTP acting in place of UTP in the normal pathway for formation of UDP-GlcNAc. Neither dUTP nor dUDP-GlcNAc has been detected in untreated cells. Inhibition of thymidylate synthetase by treatment of cells with 5-fluorodeoxyuridine (5-FdUrd) also causes the appearance of dUDP-GlcNAc, and, in addition, 5-FdUDP-GlcNAc, synthesized from 5-FdUTP. The metabolic effects, if any, of these analogues are not known. Synthesis of the analogues may help to limit accumulation of dUTP and 5-FdUTP under circumstances in which the deoxyuridine triphosphatase mechanism is insufficient.  相似文献   

15.
A mutant of Escherichia coli, previously shown to contain abnormal nucleoside triphosphate pools, was found to be defective in its ability to synthesize thymidine nucleotides. The defect is not in the enzyme thymidylate synthetase but in deoxycytidine triphosphate deaminase, an enzyme that supplies deoxyuridine monophosphate, the substrate for thymidylate synthetase.  相似文献   

16.
A quantitative comparison of the incorporation of methyl-3H-thymidine and 6-3H-deoxyuridine into the DNA of Drosophila melanogaster in the presence and in the absence of 5-fluorouracil indicated that 5-fluorouracil inhibits the reaction converting dUMP to dTMP catalysed by thymidylate synthetase (methylenetetrahydrofolate:dUrd-5′-P C-methyltransferase, E.C. 2.1.1.b). The enzyme exhibits maximal activity at pH 7·5 to 8·0 and is protected from heat inactivation by deoxyuridine monophosphate. The addition of thiol compounds to the homogenization buffer results in the enhancement of synthetase activity. The Km values for deoxyuridine monophosphate and 5,10-methylenetetrahydrofolate are 6·8 × 10?6 M and 8·3 × 10?5 M, respectively. Fluorodeoxyuridine monophosphate, trifluoromethyldeoxyuridine monophosphate, and methotrexate are inhibitors of the enzyme. 5-Bromodeoxyuridine and 5-iododeoxyuridine have no inhibitory effect. The results support the contention that, under conditions which induce morphological lesions in Drosophila, fluorinated pyrimidines and methotrexate inhibit the de novo synthesis of thymidylate whereas thymidine analogues function in some other manner.  相似文献   

17.
5-Formyl-2'-deoxyuridine (fdUrd) was prepared by a new method starting from thymidine and investigated for its influence both on proliferation of cultured mammalian cells and virus replication in vitro. The compound was found to have strong cytostatic and antiviral properties: 50% inhibition of proliferation of BHK 21/C13 cells or Ehrlich ascites tumour cells (EAT) was obtained at 4 - 10(-6) and 6 - 10(-6) M, respectively, while the treatment of pseudorabies virus with the same concentration resulted in about 1.5 log reduction of virus yield. A concentration of 1 - 10(-4) M inhibited cell proliferation by 80 to 100% while the virus yield was reduced by more than 3 orders of magnitude. All inhibitions can be prevented by thymidine.--DNA synthesis of EAT cells in vitro, as estimated by incorporation of [32P]-phosphate or low concentrations of [3H]-thymidine, was inhibited. Further biochemical experiments have provided indirect evidence that the compound is phosphorylated by thymidine and thymidylate phosphorylating enzymes. An inhibition of cell free DNA synthesis was found to be depending on a given period of preincubation with the compound (supposed to be needed for the formation of fdUrd 5'-triphosphate). This suggests that the 5'-triphosphate of fdUrd is an inhibitor of DNA polymerases and--by analogy with experiments with 5-formyluridine-5'-triphosphate and RNA polymerases [14]--may be used as an affinity label for this group of enzymes. It is concluded that the described cytostatic and antiviral effects of fdUrd are due to an intracellular "lethal" synthesis of the relevant phosphates which inhibit thymidylate synthetase (as had been found earlier to occur with the chemically prepared nucleotide in cell free extracts [1, 2]) and DNA synthesizing enzymes.  相似文献   

18.
A novel method employing high-performance liquid chromatograph-mass spectrometry (LC-MS) has been developed and validated for the quantitation of plasma 2'-deoxyuridine (UdR). It involves a plasma clean-up step with strong anion-exchange solid-phase extraction (SAX-SPE) followed by HPLC separation and atmospheric pressure chemical ionization mass spectrometry detection (APCI-MS) in a selected-ion monitoring (SIM) mode. The ionization conditions were optimised in negative ion mode to give the best intensity of the dominant formate adduct [M+HCOO]- at m/z 273. Retention times were 7.5 and 12.5 min for 2'-deoxyuridine and 5-iodo-2'-deoxyuridine, an iodinated analogue internal standard (IS), respectively. Peak area ratios of 2'-deoxyuridine to IS were used for regression analysis of the calibration curve. The latter was linear from 5 to 400 nmol/l using 1 ml sample volume of plasma. The average recovery was 81.5% and 78.6% for 2'-deoxyuridine and 5-iodo-deoxyuridine, respectively. The method provides sufficient sensitivity, precision, accuracy and selectivity for routine analysis of human plasma 2'-deoxyuridine concentration with the lowest limit of quantitation (LLOQ) of 5 nmol/l. Clinical studies in cancer patients treated with the new fluoropyrimidine analogue capecitabine (N4-pentoxycarbonyl-5'-5-fluorocytidine) have shown that plasma 2'-deoxyuridine was significantly elevated after 1 week of treatment, consistent with inhibition of thymidylate synthase (TS). These findings suggest that the mechanism of antiproliferative toxicity of capecitabine is at least partly due to TS inhibitory activity of its active metabolite 5-fluoro-2'-deoxyuridine monophosphate (FdUMP). Monitoring of plasma UdR concentrations have the potential to help clinicians to guide scheduling of capecitabine or other TS inhibitors in clinical trials. Marked differences of plasma 2'-deoxyuridine between human and rodents have also been confirmed. In conclusion, the LC-MS method developed is simple, highly selective and sensitive and permits pharmacodynamic studies of TS inhibitors in several species.  相似文献   

19.
Deoxycytidylate deaminase activity in Saccharomyces cerevisiae has been partially characterized. The yeast enzyme was found to exhibit properties similar to those of dCMP deaminases isolated from higher eucaryotes. A mutant strain completely deficient in dCMP deaminase activity was isolated by selection for resistance to 5-fluoro-2'-deoxycytidylate followed by screening for cross sensitivity to 5-fluoro-2'-deoxyuridylate, a potent inhibitor of the yeast thymidylate synthetase. We have designated this new allele dcd1 . A strain exhibiting an auxotrophic requirement for dUMP was isolated after mutagenesis of a dcd1 tup7 haploid. Genetic analysis revealed that this auxotrophic phenotype resulted from a combination of the dcd1 allele and a second, unlinked, nuclear mutation that we designated dmp1 . This allele, which by itself conveys no readily discernible phenotype, presumably impairs efficient synthesis of dUMP from UDP. The auxotrophic requirement of dcd1 dmp1 tup7 strains also can be satisfied by exogenous dTMP but not deoxyuridine.  相似文献   

20.
Deoxycytidine improves tolerance of Drosophila melanogaster to thymidine block, suggesting the presence of deoxycytidine kinase. At appropriate concentrations, a mixture of thymidine and deoxycytidine allows larvae to tolerate a higher concentration of 5-fluoro-2′-deoxyuridine than is tolerated with either thymidine or deoxycytidine alone. Thus, at this high concentration, 5-fluoro-2′-deoxyuridine appears to act primarily upon thymidylate synthetase, as it does at lower concentrations, rather than upon RNA metabolism, as has been suggested previously. Larvae can also be rescued from 5-fluoro-2′-deoxyuridine-induced death by a high concentration of thymine. The effect is enhanced by the presence of deoxyadenosine. Since this compound is known to increase the intracellular concentration of deoxyribose-1-phosphate, the main effect of thymine is probably due to its salvage utilization as a thymidine source, via the anabolic functioning of thymidine phosophorylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号