首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.  相似文献   

2.
The elucidation of the whole genome of the nematode Caenorhabditis elegans allowed for the identification of ortholog genes belonging to the pigment dispersing hormone/factor (PDH/PDF) peptide family. Members of this peptide family are known from crustaceans, insects and nematodes and seem to exist exclusively in ecdysozoans where they play a role in different processes, ranging from the dispersion of integumental and eye (retinal) pigments in decapod crustaceans to circadian rhythms in insects and locomotion in C. elegans. Two pdf genes (pdf-1 and pdf-2) encoding three different peptides: PDF-1a, PDF-1b and PDF-2 have been identified in C. elegans. These three C. elegans PDH-like peptides are similar but not identical in primary structure to PDHs from decapod crustaceans. We investigate whether this divergence has an influence on the pigment dispersing function of the peptides in a decapod crustacean, namely the shrimp Palaemon pacificus. We show that C. elegans PDF-1a and b peptides display cross-functional activity by dispersing pigments in the epithelium of P. pacificus at physiological doses. Moreover, by means of a comparative amino acid sequence analysis of nematode and crustacean PDH-like peptides, we can pinpoint several potentially important residues for eliciting pigment dispersing activity in decapod crustaceans. Although there is no sequence information on a receptor for PDH in decapod crustaceans, we postulate that there is general conservation of the PDH/PDF signaling system based on structural similarities of precursor proteins and receptors (including those from a branchiopod crustacean and from C. elegans).  相似文献   

3.
Here, we report the identification, cloning, and functional characterization of three Caenorhabditis elegans G protein-coupled pigment dispersing factor (PDF) receptors, which we designated as Ce_PDFR-1a, -b, and -c. They represent three splice isoforms of the same gene (C13B9.4), which share a high degree of similarity with the Drosophila PDF receptor and are distantly related to the mammalian vasoactive intestinal peptide receptors (VPAC2) and calcitonin receptors. In a reverse pharmacological screen, three bioactive C. elegans neuropeptides, which were recently identified as the Drosophila PDF orthologues, were able to activate these receptors in a dose-dependent manner with nanomolar potency (isoforms a and b). Integrated green fluorescent protein reporter constructs reveal the expression of these PDF receptors in all body wall muscle cells and many head and tail neurons involved in the integration of environmental stimuli and the control of locomotion. Using a custom data analysis system, we demonstrate the involvement of this newly discovered neuropeptide signaling system in the regulation of locomotor behavior. Overexpression of PDF-2 phenocopies the locomotor defects of a PDF-1 null mutant, suggesting that they elicit opposite effects on locomotion through the identified PDF receptors. Our findings strengthen the hypothesis that the PDF signaling system, which imposes the circadian clock rhythm on behavior in Drosophila, has been functionally conserved throughout the protostomian evolutionary lineage.  相似文献   

4.
5.
6.
We report the characterisation of the first neuropeptide receptor from the phylum Platyhelminthes, an early-diverging phylum which includes a number of important human and veterinary parasites. The G protein-coupled receptor (GPCR) was identified from the model flatworm Girardia tigrina (Tricladida: Dugesiidae) based on the presence of motifs widely conserved amongst GPCRs. In two different assays utilising heterologous expression in Chinese hamster ovary cells, the Girardia GPCR was most potently activated by neuropeptides from the FMRFamide-like peptide class. The most potent platyhelminth neuropeptide in both assays was GYIRFamide, a FMRFamide-like peptide known to be present in G. tigrina. There was no activation by neuropeptide Fs, another class of flatworm neuropeptides. Also active were FMRFamide-like peptides derived from other phyla but not known to be present in any platyhelminth. Most potent among these were nematode neuropeptides encoded by the Caenorhabditis elegans flp-1 gene which share a PNFLRFamide carboxy terminal motif. The ability of nematode peptides to stimulate a platyhelminth receptor demonstrates a degree of structural conservation between FMRFamide-like peptide receptors from these two distinct, distant phyla which contain parasitic worms.  相似文献   

7.
More than fifty FMRFamide-like neuropeptides have been identified in nematodes. We addressed the role of a subset of these in the control of nematode feeding by electrophysiological recording of the activity of C. elegans pharynx. AF1 (KNEFIRFamide), AF2 (KHEYLRFamide), AF8 (KSAYMRFamide), and GAKFIRFamide (encoded by the C. elegans genes flp-8, flp-14, flp-6, and flp-5, respectively) increased pharyngeal action potential frequency, in a manner similar to 5-HT. In contrast, SDPNFLRFamide, SADPNFLRFamide, SAEPFGTMRFamide, KPSVRFamide, APEASPFIRFamide, and AQTVRFamide (encoded by the C. elegans genes flp-1; flp-1; flp-3; flp-9; flp-13, and flp-16, respectively) inhibited the pharynx in a manner similar to octopamine. Only three of the neuropeptides had potent effects at low nanomolar concentrations, consistent with a physiological role in pharyngeal regulation. Therefore, we assessed whether these three peptides mediated their actions either directly on the pharynx or indirectly via the neural circuit controlling its activity by comparing actions between wild-type and mutants with deficits in synaptic signaling. Our data support the conclusion that AF1 and SAEPFGTMRFamide regulate the activity of the pharynx indirectly, whereas APEASPFIRFamide exerts its action directly. These results are in agreement with the expression pattern for the genes encoding the neuropeptides (Kim and Li, 1999) as both flp-8 and flp-3 are expressed in extrapharyngeal neurons, whereas flp-13 is expressed in I5, a neuron with synaptic output to the pharyngeal muscle. These results provide the first, direct, functional information on the action of neuropeptides in C. elegans. Furthermore, we provide evidence for a putative inhibitory peptidergic synapse, which is likely to have a role in the control of feeding.  相似文献   

8.
Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.  相似文献   

9.
10.
11.
C R Lincke  A Broeks  I The  R H Plasterk    P Borst 《The EMBO journal》1993,12(4):1615-1620
P-glycoproteins can cause multidrug resistance in mammalian tumor cells by active extrusion of cytotoxic drugs. The natural function of these evolutionarily conserved, membrane-bound ATP binding transport proteins is unknown. In mammals, P-glycoproteins are abundantly present in organs associated with the digestive tract. We have studied the tissue-specific expression of Caenorhabditis elegans P-glycoprotein genes pgp-1 and pgp-3 by transformation of nematodes with pgp-lacZ gene fusion constructs in which the promoter area of the pgp genes was fused to the coding region of lacZ. Expression of pgp-1 and pgp-3, as inferred from pgp-lacZ transgenic nematodes, was confined to the intestinal cells. The expression patterns of both genes were virtually indistinguishable. Quantitative analysis of pgp mRNA levels during development showed that pgp-1, -2, and -3 were expressed throughout the life cycle of C.elegans, albeit with some variation indicating developmental regulation. The expression of P-glycoprotein genes in intestinal cells is an evolutionarily conserved feature of these genes, consistent with the hypothesis that P-glycoproteins provide a mechanism of protection against environmental toxins.  相似文献   

12.
13.
14.
BACKGROUND: Both animals and plants respond rapidly to pathogens by inducing the expression of defense-related genes. Whether such an inducible system of innate immunity is present in the model nematode Caenorhabditis elegans is currently an open question. Among conserved signaling pathways important for innate immunity, the Toll pathway is the best characterized. In Drosophila, this pathway also has an essential developmental role. C. elegans possesses structural homologs of components of this pathway, and this observation raises the possibility that a Toll pathway might also function in nematodes to trigger defense mechanisms or to control development. RESULTS: We have generated and characterized deletion mutants for four genes supposed to function in a nematode Toll signaling pathway. These genes are tol-1, trf-1, pik-1, and ikb-1 and are homologous to the Drosophila melanogaster Toll, dTraf, pelle, and cactus genes, respectively. Of these four genes, only tol-1 is required for nematode development. None of them are important for the resistance of C. elegans to a number of pathogens. On the other hand, C. elegans is capable of distinguishing different bacterial species and has a tendency to avoid certain pathogens, including Serratia marcescens. The tol-1 mutants are defective in their avoidance of pathogenic S. marcescens, although other chemosensory behaviors are wild type. CONCLUSIONS: In C. elegans, tol-1 is important for development and pathogen recognition, as is Toll in Drosophila, but remarkably for the latter r?le, it functions in the context of a behavioral mechanism that keeps worms away from potential danger.  相似文献   

15.
NLP-12a and b have been identified as cholecystokinin/sulfakinin-like neuropeptides in the free-living nematode Caenorhabditis elegans. They are suggested to play an important role in the regulation of digestive enzyme secretion and fat storage. This study reports on the identification and characterization of an NLP-12-like peptide precursor gene in the rat parasitic nematode Strongyloides ratti. The S. ratti NLP-12 peptides are able to activate both C. elegans CKR-2 receptor isoforms in a dose-dependent way with affinities in the same nanomolar range as the native C. elegans NLP-12 peptides. The C-terminal RPLQFamide sequence motif of the NLP-12 peptides is perfectly conserved between free-living and parasitic nematodes. Based on systemic amino acid replacements the Arg-, Leu- and Phe- residues appear to be critical for high-affinity receptor binding. Finally, a SAR analysis revealed the essential pharmacophore in C. elegans NLP-12b to be the pentapeptide RPLQFamide.  相似文献   

16.
hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs.  相似文献   

17.
18.
19.
G protein-coupled receptors (GPCRs) are the largest family of genes in animal genomes and represent more than 2% of genes in humans and C. elegans. These evolutionarily conserved seven-transmembrane proteins transduce a diverse range of signals. In view of their pivotal role in cell signaling, it is perhaps surprising that decades of genetic analysis in C. elegans, and recent genome-wide RNAi screens, have identified very few GPCR mutants. Therefore, we screened all GPCRs predicted to bind either small-molecule neurotransmitters or neuropeptides by using RNAi and quantitative behavioral assays. This shows that C16D6.2, C25G6.5, C26F1.6, F35G8.1, F41E7.3, and F59C12.2 are likely to be involved in reproduction, whereas C15B12.5, C10C6.2, C24A8.4, F15A8.5, F59D12.1, T02E9.1, and T05A1.1 have a role in locomotion. Gene deletions for F35G8.1 and T05A1.1 resulted in the same phenotype as that seen with RNAi. As some GPCRs may be resistant to RNAi, or may result in abnormalities not screened for here, the actual proportion of nonredundant receptors with an assayable function is probably greater. Strikingly, most phenotypes were observed for NPY-like receptors that may bind neuropeptides. This is consistent with the known actions of neuropeptides on the body wall muscle and reproductive tract in nematodes.  相似文献   

20.
Nematode parasite infections cause disease in humans and animals and threaten global food security by reducing productivity in livestock and crop farming. The escalation of anthelmintic resistance in economically important nematode parasites underscores the need for the identification of novel drug targets in these worms. Nematode neuropeptide signalling is an attractive system for chemotherapeutic exploitation, with neuropeptide G-protein coupled receptors (NP-GPCRs) representing the lead targets. In order to successfully validate NP-GPCRs for parasite control it is necessary to characterise their function and importance to nematode biology. This can be aided through identification of receptor activating ligand(s) via deorphanisation. Such efforts require the identification of all neuropeptide ligands within parasites. Here we mined the genomes of nine therapeutically relevant pathogenic nematodes to characterise the neuropeptide-like protein complements and demonstrate that: (i) parasitic nematodes possess a reduced complement of neuropeptide-like protein-encoding genes relative to Caenorhabditis elegans; (ii) parasite neuropeptide-like protein profiles are broadly conserved between nematode clades; (iii) five Ce-nlps are completely conserved across the nematode species examined; (iv) the extent and position of neuropeptide-like protein-motif conservation is variable; (v) novel RPamide-encoding genes are present in parasitic nematodes; (vi) novel Allatostatin-C-like peptide encoding genes are present in both C. elegans and parasitic nematodes; (vii) novel neuropeptide-like protein families are absent in C. elegans; and (viii) highly conserved nematode neuropeptide-like proteins are bioactive. These data highlight the complexity of nematode neuropeptide-like proteins and reveal the need for nomenclature revision in this diverse neuropeptide family. The identification of neuropeptide-like protein ligands, and characterisation of those with functional relevance, advance our understanding of neuropeptide signalling to support exploitation of the neuropeptidergic system as an anthelmintic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号