首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The effects of the calmodulin blocker, trifluoperazine (TEP), on membrane-bound Ca++ -ATPase, Na+ -K+ -ATPase (EC 3.6.1.3.) and the ultrastructure of the enamel organ were investigated in the lower incisors of normal and TFP-injected rats. The rats, of about 100 g body weight, were given either 0.2 ml physiological saline or 100 g TFP dissolved in 0.2 ml physiological saline through a jugular vein and fixed by transcardiac perfusion with a formaldehyde-glutaraldehyde mixture at 1 and 2 h after TFP administration. Non-decalcified sections of the enamel organ less than 50 m in thickness, prepared from dissected lower incisors, were processed for the ultracytochemical demonstration of Ca++-ATPase and Na+-K+ -ATPase by the one-step lead method at alkaline pH. In control saline-injected animals the most intense enzymatic reaction of Ca++-ATPase was demonstrated along the plasma membranes of the entire cell surfaces of secretory ameloblasts. Moderate enzymatic reaction was also observed in the plasma membranes of the cells of stratum intermedium and papillary layer. Reaction precipitates of Na+-K+-ATPase activity were localized clearly along the plasma membranes of only the cells of stratum intermedium and papillary layer. The most drastic effect of TFP was a marked disappearance of enzymatic reaction of Ca++-ATPase from the plasma membranes of secretory ameloblasts, except for a weak persistent reaction in the basolateral cell surfaces of the infranuclear region facing the stratum intermedium. The cells of stratum intermedium and papillary layer, however, continued to react for Ca++-ATPase even after TFP treatment. Similarly, Na+-K+-ATPase activity in these cells was not inhibited by TFP administration. Ultrastructural examination of secretory ameloblasts revealed that administration of TFP caused no considerable cytological changes and did not act as a cytotoxic agent. These results suggest that secretory ameloblasts may have an active Ca++ transport system, which is modulated by an endogenous calmodulin.  相似文献   

3.
Inside-out vesicles of human erythrocytes took up Ca2+ against an electrochemical gradient. This Ca2+ uptake was dependent on ATP and was stimulated by calmodulin. Treatment of vesicles with 1 mM-EDTA exposed an apparent low-CA2+-affinity Ca2+-transport component with Kd of about 100 microM-Ca2+ or more. This was converted into a single high-Ca2+-affinity transport activity of Kd about 2.5 microM-Ca2+ in the presence of 2 micrograms of calmodulin/ml, showing that the decrease in transport activity after EDTA treatment was reversible. Vesicles not extracted with EDTA showed mainly apparent high-Ca2+-affinity kinetics even in the absence of added calmodulin. Trifluoperazine (30 microM) and calmodulin-binding protein (20 micrograms/ml) inhibited about 50% of the high-affinity Ca2+ uptake and (Ca2+ + Mg2+)-ATPase (Ca2+-activated, Mg2+-dependent ATPase) activity of these vesicles, indicating that the vesicles isolated by the procedure used retained some calmodulin from the erythrocytes. Comparison of Ca2+ transport and (Ca2+ + Mg2+)-ATPase activities in inside-out vesicles yielded a variable Ca2+/P1 stoichiometric ratio. At low free Ca2+ concentrations (below 20 micro-Ca2+), a Ca2+/P1 ration of about 2 was found, whereas at higher Ca2+ concentrations the stoichiometry was approx. 1. The stoichiometry was not significantly altered by calmodulin.  相似文献   

4.
5.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

6.
The mechanosensitivity of eel (Anguilla anguilla) neuromasts was measured by the impulse responses of single afferent nerve fibers to mechanical stimuli. It is dependent on the potential across the skin and on the ions in the water outside the apical membrane of the sensory cells. The mechanosensitivity decreases to zero when the skin is polarized by 10-100 mV cathodal DC (skin surface negative); it increases with increasing (10-60 mV) anodal DC and remains remarkably constant with higher polarization (Fig. 1). The mechanosensitivity increases with increasing concentrations of Ca++ outside the apical membrane of the sensory cells. Na+ and K+ have no influence. Addition of La , Co++, Mg++, D 600 and A-QA 39 inhibits the mechanosensitivity; the degree of inhibition varies with the inhibitor and the ratio [Ca++]/[inhibitor], indicating that the inhibition is competitive (Figs. 2, 3). We conclude that the apical membrane is specifically permeable to Ca++ ('late Ca channel') and that the inward receptor current through the apical membrane is carried by Ca++. Streptomycin also inhibits mechanosensitivity by competing with Ca++. With streptomycin, however, anodal polarization reduces, rather than increases, the mechanosensitivity (Fig. 4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Specific inhibition of mitochondrial Ca++ transport by ruthenium red   总被引:45,自引:0,他引:45  
The ability of rat liver mitochondria to transport calcium ions has been found to be inhibited specifically by the dye ruthenium red. Since this dye reacts specifically with mucopolysaccharides, and since energy conservation is not inhibited by this dye, it is concluded that mucopolysaccharides (in the form of mucoproteins or muco or glycolipids) are at the active center of the sites of mediation of mitochondrial Ca++ transport.  相似文献   

8.
9.
Some of the ultrastructural (freeze-etching technique), morphological, and biochemical effects of Sendai virus interaction with chicken erythrocytes have been studied under fusogenic (in the presence of CaCl2) and nonfusogenic (in the presence of ethyleneglycol-bis-N,N'-tetraacetic acid, [EGTA]) conditions. The following phenomena occur, irrespective of the presence of CaCl2 or EGTA: (a) binding of iodinated virus particles to chicken erythrocytes at 4 degrees C and their partial release from the cells at 37 degrees C; (b) gradual incorporation of the viral envelope and viral M-protein into plasma membrane, as visualized in the protoplasmic and exoplasmic fracture (P and E, respectively) faces of the membrane; and (c) virus-dependent transient clustering of intramembrane particles at 4 degrees C, which is reversible after transferring the cells back to 37 degrees C. The following virus-induced phenomena occur only in the presence of CaCl2: (a) rounding of cells followed by their fusion; (b) transient decrease in the density of intramembrane particles; and (c) the virus induces uptake of 45CaCl2 by chicken erythrocytes. The uptake is specific as it is inhibited by LaCl3, and no accumulation of [14C]glucose-1-phosphate ([14C]G-1-P) could be observed under the 45 CaCl2 uptake conditions. The data show that fusion of virus with plasma membrane is a Ca++-independent process and, as such, it should be distinguished from the virus-induced membrane-membrane and cell fusion processes. The latter is absolutely dependent on the rise of intracellular Ca++, as reflected by the fact that Ca++-induced rounding of chicken erythrocytes always precedes fusion (Volsky, D. and A. Loyter. 1977.Biochim. Biophys. Acta 471:253--259).  相似文献   

10.
A detergent extract of dog or beef heart sarcolemmal vesicles was prepared and found to have a stimulatory effect on the Ca++-ATPase of plasma membranes from human erythrocyte and cardiac sarcolemma. A procedure is described which enriches the activating fraction. The protein nature of the preparation is illustrated by its sensitivity to boiling and to the proteolytic enzyme(s) trypsin and chymotrypsin. SDS polyacrylamide gels indicate that the protein(s) involved have a molecular weight of 56 and 60 kDa. The sarcolemmal activator can stimulate the Ca++-ATPase activity of the isolated enzyme more than 100% in the presence of saturating amounts of calmodulin. The activation is calcium dependent, being greatest at approximately 10µm Ca++, free, but does not change theK m for Ca++. A possible physiological role for the activator is discussed.  相似文献   

11.
Cultured carrot cells exhibit transmembrane ferricyanide reduction through a plasma membrane redox system, which may be associated with an iron reduction and uptake system in plant roots. Here we provide evidence for the inhibition of transplasma membrane ferricyanide reduction by four different Ca2+-calmodulin type antagonists, calmidazolium, trifluoperazine, pimozide and fluphenazine. These compounds inhibit in low concentrations (approximately 5-10 microM) in a time-dependent manner. Higher concentrations (50-100 microM) are required to inhibit transmembrane ferricyanide reduction in 10 min rather than in 30 min. The permeable calcium chelator, TMB-8, also inhibits transmembrane ferricyanide reduction in carrot cells. Since the redox system is controlled by hormones, the effects of anticalmodulin agents on hormone response may be mediated through the redox system.  相似文献   

12.
13.
The role of lipids of the sarcotubular membranes in their Ca(++) uptake and Mg-ATPase activities was investigated. Treatment of the membranes with phospholipase C inhibits both processes. Treatment with phospholipase A and phospholipase D, which results in massive hydrolysis of the sarcotubular phospholipids, does not inhibit either the Ca(++) uptake or the Mg-ATPase activities, nor does treatment with the polyene antibiotics affect these processes. Essential fatty acid deficiency alters sarcotubular membrane lipids; they contain much less stearic, linoleic, and arachidonic acids and much more oleic and eicosatrienoic acids than normally, but do not lose the ability to actively sequester Ca(++). It is concluded that neither nonpolar lipids nor the nonpolar regions of polar lipids are involved in Ca(++) sequestering and Mg-ATPase activities of the sarcotubular membranes. Of the polar components, the phosphoryl moiety of the phospholipids is required for both activities. However, the phosphoryl group appears to be required for the maintenance of the membranous structure necessary for Ca(++) sequestration rather than serving specifically in the active transport process. That treatment with phospholipase D, which results in the conversion of much of the sarcotubular phospholipid from a dipolar to an anionic structure, does not affect Ca(++) uptake activity is a most remarkable finding.  相似文献   

14.
The possibility of interactions between calcium and cyclic AMP (cAMP) in the mechanism of stimulation of H+ transport by A23187 was studied in the isolated gastric mucosa of the toad Bufo marinus. A23187 stimulated H+ secretion and histamine release. The amount of histamine released by A23187 did not explain the degree of stimulation. Metiamide partially inhibited the response to A23187. Ca++ ionophore produced an overstimulation of secretion after H+ transport had been induced by supramaximal effective concentrations of histamine (10-4 M). In the presence of metiamide, IMX potentiated the response to A23187. Also, in the same condition (metiamide treated) the effects of db-cAMP and A23187 were additive. The results are consistent with an interaction between Ca++ and ionophore-released histamine at the oxyntic cell in the stimulation by A23187. The stimulatory response may be the result of a potentiation between calcium and cAMP at the intracellular level.  相似文献   

15.
16.
Isolated human red blood cell membrane fragments (RBCMF) were found to take up Ca++ in the presence of ATP.1 This ATP-dependent Ca++ uptake by RBCMF appears to be the manifestation of an active Ca++ transport mechanism in the red cell membrane reported previously (Schatzmann, 1966; Lee and Shin, 1969). The influences of altering experimental conditions on Ca++-stimulated Mg++ ATPase (Ca++ ATPase) and Ca++ uptake of RBCMF were studied. It was found that pretreatment of RBCMF at 50°C abolished both Ca++ ATPase and Ca++ uptake. Pretreatment of RBCMF with phospholipases A and C decreased both Ca++ ATPase and Ca++ uptake, whereas pretreatment with phospholipase D did not significantly alter either Ca++ ATPase or Ca++ uptake. Both Ca++ ATPase and Ca++ uptake had ATP specificity, similar optimum pH's, and optimum incubation temperatures. From these results, it was concluded that Ca++ uptake is intimately linked to Ca++ ATPase.  相似文献   

17.
The phosphorylation of red blood cell membrane fragments (RBCMF) during Ca++ transport was investigated. When red cell membrane fragments are incubated with [gamma-32P]ATP under the experimental condition which minimizes the phosphorylation of Na+-K+-ATPase, RBCMF are labeled in the presence of Mg++ without Ca++. When Ca++ is added, the labeling decreases due to dephosphorylation of RBCMF. The initial reaction of phosphorylation is reversed in the presence of excess ADP. The treatment of RBCMF with n-ethylmaleimide (NEM) does not interfere with the initial phosphorylation reaction, but blocks the dephosphorylation in the presence of Ca++. These data suggest that the enzymatic sequence of the Ca++ transport mechanism may be very similar to that of the Na+ transport mechanism.  相似文献   

18.
19.
Relations are derived that describe the combined effects of electrodiffusion, the Na/K pump, and Na/Ca transport by carrier on the resting membrane potential. Equations are derived that apply to both steady-state and non-steady-state conditions. Some example calculations from the equations are plotted at different permeability coefficient ratios, PK:PCa:PNa. The equations predict a depolarizing action of Na/Ca transport when more than two Na ions per Ca ion are transported by the carrier. For all permeability ratios examined, a steady state for Ca ions is achieved with at most a few millivolts of depolarization.  相似文献   

20.
Vanadate inhibits the Ca++-ATPase of sarcoplasmic reticulum from pig heart half maximally at about 10?5 M. Mg++ promotes this inhibition by vanadate whereas increasing Ca++-concentrations protect the enzyme against vanadate inhibition. Keeping the ratio Mg++ATP constant there was no influence of ATP on the vanadate inhibition at concentrations up to 5 × 10?3 M ATP. Whenever the ratio Mg++ATP was higher than 1:1 the inhibitory effect of vanadate on the Ca++-ATPase was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号