共查询到20条相似文献,搜索用时 0 毫秒
1.
Toy D Kugler D Wolfson M Vanden Bos T Gurgel J Derry J Tocker J Peschon J 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(1):36-39
IL-17 is an inflammatory cytokine produced primarily by a unique lineage of CD4 T cells that plays critical roles in the pathogenesis of multiple autoimmune diseases. IL-17RA is a ubiquitously expressed receptor that is essential for IL-17 biologic activity. Despite widespread receptor expression, the activity of IL-17 is most classically defined by its ability to induce the expression of inflammatory cytokines, chemokines, and other mediators by stromal cells. The lack of IL-17 responsiveness in mouse stromal cells genetically deficient in IL-17RA is poorly complemented by human IL-17RA, suggesting the presence of an obligate ancillary component whose activity is species specific. This component is IL-17RC, a distinct member of the IL-17R family. Thus, the biologic activity of IL-17 is dependent on a complex composed of IL-17RA and IL-17RC, suggesting a new paradigm for understanding the interactions between the expanded family of IL-17 ligands and their receptors. 相似文献
2.
Soeder KJ Snedden SK Cao W Della Rocca GJ Daniel KW Luttrell LM Collins S 《The Journal of biological chemistry》1999,274(17):12017-12022
Promiscuous coupling between G protein-coupled receptors and multiple species of heterotrimeric G proteins provides a potential mechanism for expanding the diversity of G protein-coupled receptor signaling. We have examined the mechanism and functional consequences of dual Gs/Gi protein coupling of the beta3-adrenergic receptor (beta3AR) in 3T3-F442A adipocytes. The beta3AR selective agonist disodium (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1, 3-benzodioxole-2,2-dicarboxylate (CL316,243) stimulated a dose-dependent increase in cAMP production in adipocyte plasma membrane preparations, and pretreatment of cells with pertussis toxin resulted in a further 2-fold increase in cAMP production by CL316,243. CL316,243 (5 microM) stimulated the incorporation of 8-azido-[32P]GTP into Galphas (1.57 +/- 0.12; n = 3) and Galphai (1. 68 +/- 0.13; n = 4) in adipocyte plasma membranes, directly demonstrating that beta3AR stimulation results in Gi-GTP exchange. The beta3AR-stimulated increase in 8-azido-[32P]GTP labeling of Galphai was equivalent to that obtained with the A1-adenosine receptor agonist N6-cyclopentyladenosine (1.56 +/- 0.07; n = 4), whereas inclusion of unlabeled GTP (100 microM) eliminated all binding. Stimulation of the beta3AR in 3T3-F442A adipocytes led to a 2-3-fold activation of mitogen-activated protein (MAP) kinase, as measured by extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation. Pretreatment of cells with pertussis toxin (PTX) eliminated MAP kinase activation by beta3AR, demonstrating that this response required receptor coupling to Gi. Expression of the human beta3AR in HEK-293 cells reconstituted the PTX-sensitive stimulation of MAP kinase, demonstrating that this phenomenon is not exclusive to adipocytes or to the rodent beta3AR. ERK1/2 activation by the beta3AR was insensitive to the cAMP-dependent protein kinase inhibitor H-89 but was abolished by genistein and AG1478. These data indicate that constitutive beta3AR coupling to Gi proteins serves both to restrain Gs-mediated activation of adenylyl cyclase and to initiate additional signal transduction pathways, including the ERK1/2 MAP kinase cascade. 相似文献
3.
Takeda K Shimozono R Noguchi T Umeda T Morimoto Y Naguro I Tobiume K Saitoh M Matsuzawa A Ichijo H 《The Journal of biological chemistry》2007,282(10):7522-7531
Apoptosis signal-regulating kinase (ASK) 1 is a mitogen-activated protein kinase kinase kinase (MAP3K) in the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways that play multiple important roles in cytokine and stress responses. Here we show that ASK2, a highly related serine/threonine kinase to ASK1, also functions as a MAP3K only in a heteromeric complex with ASK1. We found that endogenous ASK2 was constitutively degraded in ASK1-deficient cells, suggesting that ASK1 is required for the stability of ASK2. ASK2 in a heteromeric complex with a kinase-negative mutant of ASK1 (ASK1-KN) effectively activated MAP2K and was more competent to respond to oxidative stress than ASK2 alone. Knockdown of ASK2 revealed that ASK2 was required for oxidative stress-induced JNK activation. These results suggest that ASK2 forms a functional MAP3K complex with ASK1, in which ASK1 supports the stability and the active configuration of ASK2. Moreover, ASK2 was found to activate ASK1 by direct phosphorylation, suggesting that ASK1 and ASK2 in a heteromeric complex facilitate their activities to each other by distinct mechanisms. Such a formation of functional heteromeric complex between different MAP3Ks may be advantageous for cells to cope with a wide variety of stimuli by fine regulation of cellular responses. 相似文献
4.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130. 相似文献
5.
6.
Erick T. Tjhin Vanessa M. Howieson Christina Spry Giel G. van Dooren Kevin J. Saliba 《PLoS pathogens》2021,17(7)
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms. 相似文献
7.
Shim J Park HS Kim MJ Park J Park E Cho SG Eom SJ Lee HW Joe CO Choi EJ 《The Journal of biological chemistry》2000,275(19):14107-14111
The Rb protein is the product of the retinoblastoma susceptibility gene and loss of Rb function is detected in many types of human cancers. Rb plays important roles in the regulation of cell proliferation, differentiation, senescence, and apoptotic cell death. Here we show that Rb can physically interact with c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK), thereby inhibiting intracellular signals mediated by JNK/SAPK. Both in vitro binding and in vitro kinase studies suggest that a carboxyl-terminal domain of Rb containing amino acids 768-928 might be crucial for inhibiting JNK/SAPK. In comparison, Rb did not affect enzymatic activity of either extracellular signal-regulated kinase 1 or p38. Ectopically expressed Rb also abrogated the apoptotic cell death induced by ultraviolet radiation or the activation of MEKK1, an upstream kinase that can stimulate the JNK/SAPK cascade. JNK/SAPK inhibition highlights a novel function of Rb, which may provide a new mechanism by which Rb regulates cell death. JNK/SAPK is a major protein kinase that can be stimulated in response to a variety of cellular stresses. Our results, therefore, suggest that Rb, by inhibiting JNK/SAPK, may act as a negative regulator in stress-activated intracellular signaling cascades. 相似文献
8.
Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents
axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward
understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor
(p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element
of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon
regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for
axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals
and may provide an efficient molecular target against injuries to the CNS. 相似文献
9.
10.
D G Woodside A Obergfell L Leng J L Wilsbacher C K Miranti J S Brugge S J Shattil M H Ginsberg 《Current biology : CB》2001,11(22):1799-1804
Syk protein tyrosine kinase is essential for immune system development and function [1]and for the maintenance of vascular integrity [2,3]. In leukocytes, Syk is activated by binding to diphosphorylated immune receptor tyrosine-based activation motifs (pITAMs)[1]. Syk can also be activated by integrin adhesion receptors [4,5], but the mechanism of its activation is unknown. Here we report a novel mechanism for Syk's recruitment and activation, which requires that Syk bind to the integrin beta3 cytoplasmic tail. We found that both Syk and the related kinase ZAP-70 bound the beta3 cytoplasmic tail through their tandem SH2 domains. However, unlike Syk binding to pITAMs, this interaction was independent of tyrosine phosphorylation and of the phosphotyrosine binding function of Syk's tandem SH2 domains. Deletion of the four C-terminal residues of the beta3 cytoplasmic tail [beta3(759X)] decreased Syk binding and disrupted its physical association with integrin alphaIIbbeta3. Furthermore, cells expressing alphaIIbbeta3(759X) failed to exhibit Syk activation or lamellipodia formation upon cell adhesion to the alphaIIbbeta3 ligand, fibrinogen. In contrast, FAK phosphorylation and focal adhesion formation were unimpaired by this mutation. Thus, the direct binding of Syk kinase to the integrin beta3 cytoplasmic tail is a novel and functionally significant mechanism for the regulation of this important non-receptor tyrosine kinase. 相似文献
11.
Exposure of beta 2-adrenergic receptors (beta 2ARs) to agonists causes a rapid desensitization of the receptor-stimulated adenylyl cyclase response. Phosphorylation of the beta 2AR by several distinct kinases plays an important role in this desensitization phenomenon. In this study, we have utilized purified hamster lung beta 2AR and stimulatory guanine nucleotide binding regulatory protein (Gs), reconstituted in phospholipid vesicles, to investigate the molecular properties of this desensitization response. Purified hamster beta 2AR was phosphorylated by cAMP-dependent protein kinase (PKA), protein kinase C (PKC), or beta AR kinase (beta ARK), and receptor function was determined by measuring the beta 2AR-agonist-promoted Gs-associated GTPase activity. At physiological concentrations of Mg2+ (less than 1 mM), receptor phosphorylation inhibited coupling to Gs by 60% (PKA), 40% (PKC), and 30% (beta ARK). The desensitizing effect of phosphorylation was, however, greatly diminished when assays were performed at concentrations of Mg2+ sufficient to promote receptor-independent activation of Gs (greater than 5 mM). Addition of retinal arrestin, the light transduction component involved in the attenuation of rhodopsin function, did not enhance the uncoupling effect of beta ARK phosphorylation of beta 2AR when assayed in the presence of 0.3 mM free Mg2+. At concentrations of Mg2+ ranging between 0.5 and 5.0 mM, however, significant potentiation of beta ARK-mediated desensitization was observed upon arrestin addition. At a free Mg2+ concentration of 5 mM, arrestin did not potentiate the inhibition of receptor function observed on PKA or PKC phosphorylation. These results suggest that distinct pathways of desensitization exist for the receptor phosphorylated either by PKA or PKC or alternatively by beta ARK. 相似文献
12.
R O Oreffo G R Mundy S M Seyedin L F Bonewald 《Biochemical and biophysical research communications》1989,158(3):817-823
Although TGF beta is unquestionably an important growth regulatory polypeptide with effects on many cell types, the cellular mechanisms which release it from the binding proteins which mask its biological activity are not well understood. Here we show that when isolated osteoclasts are activated, they release active TGF beta from the latent TGF beta complex produced by bone organ cultures. Since active TGF beta has powerful inhibitory effects on osteoclast formation and bone resorption and stimulates osteoblast activity, is present in abundant amounts in the bone matrix and is released during hormone-stimulated osteoclastic bone resorption, the activation of TGF beta by stimulated osteoclasts may be an important regulatory step in normal bone remodeling. 相似文献
13.
14.
Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12 总被引:8,自引:0,他引:8
Activation of the type I TGFbeta receptor (TbetaR-I) requires phosphorylation of a regulatory segment known as the GS region, located upstream of the serine/threonine kinase domain in the cytoplasmic portion of the receptor. The crystal structure of a fragment of unphosphorylated TbetaR-I, containing both the GS region and the catalytic domain, has been determined in complex with the FK506-binding protein FKBP12. TbetaR-I adopts an inactive conformation that is maintained by the unphosphorylated GS region. FKBP12 binds to the GS region of the receptor, capping the TbetaR-II phosphorylation sites and further stabilizing the inactive conformation of TbetaR-I. Certain structural features at the catalytic center of TbetaR-I are characteristic of tyrosine kinases rather than Ser/Thr kinases. 相似文献
15.
16.
Stimulation of the platelet-derived growth factor beta receptor signaling pathway activates protein kinase C-delta. 总被引:5,自引:1,他引:5 下载免费PDF全文
W Li J C Yu P Michieli J F Beeler N Ellmore M A Heidaran J H Pierce 《Molecular and cellular biology》1994,14(10):6727-6735
The murine myeloid progenitor cell line 32D was recently shown to undergo monocytic differentiation when protein kinase C-delta (PKC-delta) was overexpressed and activated by 12-O-tetradecanoylphorbol-13-acetate (TPA) (H. Mischak, J.H. Pierce, J. Goodnight, M.G. Kazanietz, P.M. Blumberg, and J.F. Mushinski, J. Biol. Chem. 268:20110-20115, 1993). Tyrosine phosphorylation of PKC-delta occurred when PKC-delta-transfected 32D cells were stimulated by TPA (W. Li, H. Mischak, J.-C. Yu, L.-M. Wang, J.F. Mushinski, M.A. Heidaran, and J.H. Pierce, J. Biol. Chem. 269:2349-2352, 1994). In order to elucidate the role played by PKC-delta in response to activation of a receptor tyrosine kinase, we transfected platelet-derived growth factor beta receptor (PDGF-beta R) alone (32D/PDGF-beta R) or together with PKC-delta (32D/PDGF-beta R/PKC-delta) into 32D cells. NIH 3T3 cells which endogenously express both PDGF-alpha R and PDGF-beta R were also transfected with PKC-delta (NIH 3T3/PKC-delta). Like TPA treatment, PDGF-BB stimulation caused striking phosphorylation of PKC-delta in vivo and translocation of some PKC-delta from the cytosol fraction to the membrane fraction in both cell systems. Some of the phosphorylation induced by PDGF-BB treatment was found to be on a tyrosine residue(s). Tyrosine-phosphorylated PKC-delta was observed only for the membrane fraction after stimulation with PDGF-BB or TPA. The enzymatic activity of PKC-delta in the membrane fraction also increased after stimulation with TPA or PDGF, providing a positive correlation between PKC-delta tyrosine phosphorylation and its activation. Overnight treatment of 32D/PDGF-beta R/PKC-delta cells with PDGF-BB induced monocytic differentiation as judged by an increase in expression of cell surface macrophage differentiation markers. PDGF-BB had much weaker effects on 32D/PDGF-beta R cell differentiation, suggesting that increased PKC-delta expression enhanced monocytic differentiation. These results indicate that PKC-delta is a downstream molecule in the PDGFR signaling pathway and may play a pivotal role in PDGF-beta R-mediated cell differentiation. 相似文献
17.
TGFbeta activated kinase 1 (TAK1) is a MAPKKK that in cell culture systems has been shown to act downstream of a variety of signaling molecules, including TGFbeta. Its role during vertebrate development, however, has not been examined by true loss-of-function studies. In this report, we describe the phenotype of mouse embryos in which the Tak1 gene has been inactivated by a genetrap insertion. Tak1 mutant embryos exhibit defects in the developing vasculature of the embryo proper and yolk sac. These defects include dilation and misbranching of vessels, as well as an absence of vascular smooth muscle. The phenotype of Tak1 mutant embryos is strikingly similar to that exhibited by loss-of-function mutations in the TGFbeta type I receptor Alk1 and the type III receptor endoglin, suggesting that TAK1 may be a major effector of TGFbeta signals during vascular development. Consistent with this view, we find that in zebrafish, morpholinos to TAK1 and ALK1 synergize to enhance the Alk1 vascular phenotype. Moreover, we show that overexpression of TAK1 is able to rescue the vascular defect produced by morpholino knockdown of ALK1. Taken together, these results suggest that TAK1 is probably an important downstream component of the TGFbeta signal transduction pathway that regulates vertebrate vascular development. In addition, as heterozygosity for mutations in endoglin and ALK1 lead to the human syndromes known as hereditary hemorrhagic telangiectasia 1 and 2, respectively, our results raise the possibility that mutations in human TAK1 might contribute to this disease. 相似文献
18.
Actin of fragmin-actin complex is phosphorylated by an endogenous kinase from plasmodium of Physarum polycephalum. The phosphorylation abolishes the nucleation and capping activities of fragmin-actin complex. The kinase has been purified and termed actin kinase [Furuhashi, K. & Hatano, S. (1990) J. Cell Biol. 111, 1081-1087]. Enzymatic properties of the purified actin kinase were studied in detail. Actin kinase exhibited the highest activity under conditions physiological for the plasmodium (30 mM KCl, 6 mM MgCl2, pH 7.0). The Vmax and the Km of the enzyme for ATP were about 83 mumol/min/mg and 25 microM, respectively. The Km for fragmin-actin complex was 190 nM. The purified actin kinase phosphorylated actin of fragmin-actin complex at a constant rate regardless of Ca2+ concentration. Similarly, 2 microM cAMP, 2 microM cGMP, 2 micrograms/ml calmodulin in the presence of Ca2+ or 1 mM GTP showed no effect on the activity of the purified enzyme. Actin kinase did not phosphorylate histone H1, H2B, alpha-casein, or beta-casein, suggesting that actin kinase is a new kind of protein kinase which specifically phosphorylates actin of the fragmin-actin complex. 相似文献
19.
D H Chu N S van Oers M Malissen J Harris M Elder A Weiss 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(5):2610-2620
Thymocyte development proceeds through two critical checkpoints that involve signaling events through two different receptors, the TCR and the pre-TCR. These receptors employ two families of protein tyrosine kinases to propagate their signals, the Src and Syk families. Genetic and biochemical evidence has shown that the Src family kinases are critical for normal T cell maturation. ZAP-70, a Syk family kinase, has similarly been implicated as a critical component in thymocyte development. Although genetic evidence has suggested that Syk is involved during thymocyte development, a definitive study of Syk expression has not been performed. In this paper we report our reanalysis of Syk expression in subpopulations of murine and human thymocytes by intracellular staining and flow cytometry using anti-Syk mAbs. Syk is expressed at increased levels during the stages in which pre-TCR signaling occurs. Furthermore, Syk is down-regulated after the pre-TCR checkpoint has been passed. Syk may play an important role in thymic development during pre-TCR signal transduction. Finally, incomplete down-regulation of Syk expression was noted in human thymocytes, offering a possible explanation for the distinct phenotypes of mice and humans deficient in ZAP-70. 相似文献