首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Liu  I P Sugar    P L Chong 《Biophysical journal》1997,72(5):2243-2254
We have examined the fractional sterol concentration dependence of dehydroergosterol (DHE) fluorescence in DHE/cholesterol/dimyristoyl-L-alpha-phosphatidylcholine (DMPC), DHE/ergosterol/DMPC and DHE/cholesterol/dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) liquid-crystalline bilayers. Fluorescence intensity and lifetime exhibit local minima (dips) whenever the total sterol mole fraction, irrespective of the DHE content, is near the critical mole fractions predicted for sterols being regularly distributed in hexagonal superlattices. This result provides evidence that all three of these naturally occurring sterols (e.g., cholesterol, ergosterol, and DHE) can be regularly distributed in the membrane and that the bulky tetracyclic ring of the sterols is the cause of regular distribution. Moreover, at the critical sterol mole fractions, the steady-state anisotropy of DHE fluorescence and the calculated rotational relaxation times exhibit distinct peaks, suggesting that membrane free volume reaches a local minimum at critical sterol mole fractions. This, combined with the well-known sterol condensing effect on lipid acyl chains, provides a new understanding of how variations in membrane sterol content change membrane free volume. In addition to the fluorescence dips/peaks corresponding to hexagonal superlattices, we have observed intermediate fluorescence dips/peaks at concentrations predicted by the centered rectangular superlattice model. However, the 22.2 mol% dip for centered rectangular superlattices in DHE/ergosterol/DMPC mixtures becomes diminished after long incubation (4 weeks), whereas on the same time frame the 22.2 mol% dip in DHE/cholesterol/DMPC mixtures remains discernible, suggesting that although all three of these sterols can be regularly distributed, subtle differences in sterol structure cause changes in lateral sterol organization in the membrane.  相似文献   

2.
Lipid bilayer membranes composed of DOPC, DPPC, and a series of sterols demix into coexisting liquid phases below a miscibility transition temperature. We use fluorescence microscopy to directly observe phase transitions in vesicles of 1:1:1 DOPC/DPPC/sterol within giant unilamellar vesicles. We show that vesicles containing the "promoter" sterols cholesterol, ergosterol, 25-hydroxycholesterol, epicholesterol, or dihydrocholesterol demix into coexisting liquid phases as temperature is lowered through the miscibility transition. In contrast, vesicles containing the "inhibitor" sterols androstenolone, coprostanol, cholestenone, or cholestane form coexisting gel (solid) and liquid phases. Vesicles containing lanosterol, a sterol found in the cholesterol and ergosterol synthesis pathways, do not exhibit coexisting phases over a wide range of temperatures and compositions. Although more detailed phase diagrams and precise distinctions between gel and liquid phases are required to fully define the phase behavior of these sterols in vesicles, we find that our classifications of promoter and inhibitor sterols are consistent with previous designations based on fluorescence quenching and detergent resistance. We find no trend in the liquid-liquid or gel-liquid transition temperatures of membranes with promoter or inhibitor sterols and measure the surface fraction of coexisting phases. We find that the vesicle phase behavior is related to the structure of the sterols. Promoter sterols have flat, fused rings, a hydroxyl headgroup, an alkyl tail, and a small molecular area, which are all attributes of "membrane active" sterols.  相似文献   

3.
We previously reported that 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) forms an interdigitated gel phase in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine (16:0LPC) at concentrations below 30 mol%. In the present investigation, fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), X-ray diffraction, and differential scanning calorimetry (DSC) were used to investigate the effect of cholesterol on the phase behavior of 16:0LPC/DPPC binary mixtures. At 25 degrees C, 30 mol% 16:0LPC significantly decreases the DPH fluorescence intensity during the transition of DPPC from the L(beta') phase to the L(betaI) phase. However, the addition of cholesterol to 16:0LPC/DPPC mixtures results in a substantial increase in fluorescence intensity. The changes in DPH fluorescence intensity reflect the probe's redistribution from an orientation parallel to the acyl chain to the center of the bilayer, suggesting a bilayer structure transition from interdigitation to noninterdigitation. The normal repeat period of small angle X-ray diffraction patterns can be restored and a reflection appears at 0.42 nm with a broad shoulder around 0.41 nm in wide angle X-ray diffraction patterns when 10 mol% cholesterol is incorporated into 30 mol% 16:0LPC/DPPC vesicles, indicating that the mixtures are in the gel phase (L(beta')). Moreover, DSC results demonstrate that 10 mol% cholesterol is sufficient to significantly decrease the main enthalpy, cooperativity and lipid chain melting of 30 mol% 16:0LPC/DPPC binary mixtures, which are L(betaI), indicating that the transition of the interdigitated phase is more sensitive to cholesterol than that of the noninterdigitated phase. Our data imply that the interdigitated gel phase induced by 16:0LPC is prevented in the presence of 10 mol% cholesterol, but unlike ethanol, an increasing concentration of 16:0LPC is not able to restore the interdigitation structure of the lipid mixtures.  相似文献   

4.
The well-known reduction in the permeability properties of liposomes of dimyristoylphosphatidylcholine (DMPC) by sterols has also been demonstrated for its sulfonium analog (DMPSC) in which the N+(CH3)3 group of choline is replaced by S+(CH3)2. We have now compared the effects of 25 mol% 24-methylenecholesterol and cholesterol on the initial rates of urea permeation into dipalmitoyl-PC (DPPC) and dipalmitoyl-PSC (DPPSC) liposomes above the gel-to-liquid-crystalline phase transition temperature and found a greater reduction with 24-methylenecholesterol/DPPSC than with cholesterol/DPPSC liposomes but little difference between the two sterols in DPPC liposomes. Fluorescence polarization studies, using diphenylhexatriene as a probe, show that polarization (P) values are considerably higher in DMPSC liposomes containing 20 and 30 mol% 24-methylenecholesterol than in DMPC liposomes containing 20 and 30 mol% cholesterol. Higher P values were also obtained in DMPSC liposomes containing other 24-alkyl-substituted sterols (beta-sitosterol, ergosterol and campesterol) than in DMPC liposomes containing the same sterols. Reduced permeability rates in PSC liposomes containing 24-alkyl-substituted sterols are correlated with higher polarization values, reflecting an increased degree of order and/or motion in these liposomes compared with liposomes from the corresponding PC. These results suggest that alkyl substitution at C-24 of the sterol molecule results in tighter interactions with the sulfonium analog of PC than with PC.  相似文献   

5.
We performed comparative DSC and FTIR spectroscopic measurements of the effects of cholesterol (Chol) and ergosterol (Erg) on the thermotropic phase behavior and organization of DPPC bilayers. Ergosterol is the major sterol in the biological membranes of yeasts, fungi and many protozoa. It differs from Chol in having two additional double bonds, one in the steroid nucleus at C7-8 and another in the alkyl chain at C22-23. Erg also has an additional methyl group in the alkyl chain at C24. Our DSC studies indicate that the incorporation of Erg is more effective than Chol is in reducing the enthalpy of the pretransition. At lower concentrations Erg is also more effective than Chol in reducing the enthalpies of both the sharp and broad components of main phase transition. However, at sterol concentrations from 30 to 50 mol%, Erg is generally less effective at reducing the enthalpy of the broad components and does not completely abolish the cooperative hydrocarbon chain-melting phase transition at 50 mol%, as does Chol. Nevertheless, in this higher ergosterol concentration range, there is no evidence of the formation of ergosterol crystallites. Our FTIR spectroscopic studies demonstrate that Erg incorporation produces a similar ordering of liquid-crystalline DPPC bilayers as does Chol, but an increased degree of hydrogen bonding of the fatty acyl carbonyl groups in the glycerol backbone region of the DPPC bilayer. These and other results indicate that Erg is less miscible in DPPC bilayers at higher concentrations than is Chol. Finally, we provide a tentative molecular explanation for the comparative experimental and computation results obtained for Erg and Chol in phospholipid bilayers, emphasizing the dynamic conformational differences between these two sterols.  相似文献   

6.
Small-angle neutron scattering (SANS) measurements are performed on pure dimyristoyl phosphatidylcholine (DMPC) unilamellar vesicles (ULV) and those containing either 20 or 47 mol% cholesterol, ergosterol or lanosterol. From the SANS data, we were able to determine the influence of these sterols on ULV bilayer thickness and vesicle area expansion coefficients. While these parameters have been determined previously for membranes containing cholesterol, to the best of our knowledge, this is the first time such results have been presented for membranes containing the structurally related sterols, ergosterol and lanosterol. At both molar concentrations and at temperatures ranging from 10 to 45 degrees C, the addition of the different sterols leads to increases in bilayer thickness, relative to pure DMPC. We observe large differences in the influence of these sterols on the membrane thermal area expansion coefficient. All three sterols, however, produce very similar changes to membrane thickness.  相似文献   

7.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the "left endpoint" and "right endpoint" of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

8.
Epifluorescence microscopy was used to investigate the effect of cholesterol on monolayers of dipalmitoylphosphatidylcholine (DPPC) and 1 -palmitoyl-2-oleoyl phosphatidylcholine (POPC) at 21 +/- 2 degrees C using 1 mol% 1-palmitoyl-2-[12-[(7-nitro-2-1, 3-benzoxadizole-4-yl)amino]dodecanoyl]phosphatidylcholine (NBD-PC) as a fluorophore. Up to 30 mol% cholesterol in DPPC monolayers decreased the amounts of probe-excluded liquid-condensed (LC) phase at all surface pressures (pi), but did not effect the monolayers of POPC, which remained in the liquid-expanded (LE) phase at all pi. At low pi (2-5 mN/m), 10 mol% or more cholesterol in DPPC induced a lateral phase separation into dark probe-excluded and light probe-rich regions. In POPC monolayers, phase separation was observed at low pi when > or =40 mol% or more cholesterol was present. The lateral phase separation observed with increased cholesterol concentrations in these lipid monolayers may be a result of the segregation of cholesterol-rich domains in ordered fluid phases that preferentially exclude the fluorescent probe. With increasing pi, monolayers could be transformed from a heterogeneous dark and light appearance into a homogeneous fluorescent phase, in a manner that was dependent on pi and cholesterol content. The packing density of the acyl chains may be a determinant in the interaction of cholesterol with phosphatidylcholine (PC), because the transformations in monolayer surface texture were observed in phospholipid (PL)/sterol mixtures having similar molecular areas. At high pi (41 mN/m), elongated crystal-like structures were observed in monolayers containing 80-100 mol% cholesterol, and these structures grew in size when the monolayers were compressed after collapse. This observation could be associated with the segregation and crystallization of cholesterol after monolayer collapse.  相似文献   

9.
As a simple model of rafts in plant cells, the effect of stigmasterol, one of the predominant sterols in plant plasma membranes, on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multilayers has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and freeze-fracture electron microscopy (FFEM) techniques. A partial phase diagram of the binary system has been constructed. Particularly, the stigmasterol concentrations of the “left endpoint” and “right endpoint” of the three-phase line have been determined using the newly developed linear and nonlinear fitting method. They are 6.2 and 23.7 mol%, respectively. Furthermore, the resemblance and difference of phase diagrams of DPPC/stigmasterol, DPPC/cholesterol, and DPPC/ergosterol have been compared and the efficiency of these sterols in promoting the formation of the liquid-ordered domains (rafts) have also been discussed.  相似文献   

10.
The permeability of egg yolk lecithin (EYL) vesicles to Pr3+ has been measured by 31P nuclear magnetic resonance (nmr) spectroscopy. Measurable Pr3+ leakage into the internal aqueous compartment of EYL vesicles at ambient (21 degrees C) temperature required the presence of small (7--10 mol%) amounts of dicetyl phosphate (DCP). The permeability of DCP-containing vesicles is decreased by incorporation of sterol (cholesterol greater than ergosterol approximately 5.6-dihydroergosterol greater than zymosterol) into the lipid bilayer. Addition of the polyene macrolide antibiotic, nystatin, to DCP-containing EYL vesicles with and without sterol resulted in increased Pr3+ permeability at the three temperatures studied (21--37.5 degrees C). Permeability changes observed upon addition of nystatin to sterol-impregnated, DCP-containing vesicles varied with sterol structure: ergosterol approximately 5,6-dihydroergosterol greater than cholesterol approximately zymosterol. These results are compared with other polyene macrolide induced permeability changes on model and natural membrane systems. Permeability changes induced by nystatin in sterol-free EYL vesicles were generally greater than for comparable sterol-containing vesicles. This is attributed to a nonspecific interaction of the antibiotic with the latter vesicles.  相似文献   

11.
It is commonly believed that all membrane sterols are rigid all-trans ring systems with a fully extended alkyl side-chain and that they similarly influence phospholipid bilayer physical properties. Here, we report the sterol concentration-dependent, thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two similar 5α-H sterols with different functional group orientations (3α-OH or 3β-OH), which adopt an ideal all-trans planar ring conformation but lack the deformed ring B conformation of cholesterol (Chol) and epicholesterol (Echol), using differential scanning calorimetry (DSC). Our deconvolution of the DSC main phase transition endotherms show differences in the proportions of sterol-poor (sharp) and sterol-rich (broad) domains in the DPPC bilayer with increasing sterol concentration, which delineate gel/liquid-crystalline (Pβ′/Lα) and disordered gel (Lβ)/liquid-ordered (lo) phase regions. There are similarities in the DPPC main phase transition temperature, cooperativity and enthalpy for each 3β-ol and 3α-ol pair with increasing sterol concentration and differences in the parameters obtained for both the sterol-poor and sterol-rich regions. The sterol-poor domain persists over a greater concentration range in both 3α-ol/DPPC mixtures, suggesting that either those domains are more stable in the 3α-ols or that those sterols are less miscible in the sterol-rich domain. Corresponding parameters for the sterol-rich domain show that at sterol concentrations up to 20 mol%, the 5α-H,3β-ol is more effective at reducing the phase transition enthalpy of the broad component () than Chol, but is less effective at higher concentrations. Although mixtures containing Echol and 5α-cholestan-3α-ol have similar positive slopes below 7 mol% sterol, suggesting that they abolish the Lβ/lo phase transition equally effectively at low concentrations, Echol is more effective than the saturated 3α-ol at higher sterol concentrations. A comparison of obtained for the saturated and unsaturated pairs suggests that the latter sterols stabilize the lo phase and broaden and abolish the DPPC main phase transition more effectively than the saturated sterols at physiologically relevant concentrations, supporting the idea that the double bond of Chol and Echol promotes greater sterol miscibility and the formation of lo phase lipid bilayers relative to corresponding saturated sterols in biological membranes.  相似文献   

12.
We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.  相似文献   

13.
Cholesterol content is critical for membrane functional properties. We studied the influence of cholesterol and its precursors desmosterol and lanosterol on lateral diffusion of phospholipids and sterols by1H pulsed field gradients (PFG) magic angle spinning (MAS) NMR spectroscopy. The high resolution of resonances afforded by MAS NMR permitted simultaneous diffusion measurements on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and sterols. The cholesterol diffusion mirrored the DPPC behavior, but rates were slightly higher at all cholesterol concentrations. DPPC and cholesterol diffusion rates decreased and became cholesterol concentration dependent with the onset of liquid-ordered phase formation. The activation energies of diffusion in the coexistence region of liquid-ordered/liquid-disordered phases are higher by about a factor of 2 compared to pure DPPC and to the pure liquid-ordered state formed at higher cholesterol concentrations. We assume that the higher activation energies are a reflection of lipid diffusion across domain boundaries. In lanosterol- and desmosterol-containing membranes, the DPPC and sterol diffusion coefficients are somewhat higher. Whereas the desmosterol rates are only slightly higher than those of DPPC, the lanosterol diffusion rates significantly exceed DPPC rates, indicating a weaker interaction between DPPC and lanosterol.  相似文献   

14.
Xu X  London E 《Biochemistry》2000,39(5):843-849
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.  相似文献   

15.
Differential scanning calorimetry is a useful method to study the thermotropic phase transitions of a phospholipid bilayer. In the present study DSC is used to determine the effects of methanol and ethanol on DPPC and DPPC/2 mol% cholesterol bilayers. The biphasic effect of the main transition and the presence of an extra peak on the DSC cooling scans were observed above certain alcohol concentrations. In the presence of 2% cholesterol, the concentration at which the biphasic effect occurs is increased by both short-chain alcohols. 1,6-Diphenyl-1,3,5-hexatriene (DPH) is used as a fluorescent probe to directly determine the onset of interdigitation in these systems as reflected by a drop in the DPH fluorescence intensity.  相似文献   

16.
The phospholipid analogue miltefosine or hexadecylphosphocholine (HePC) is a drug of high interest in the treatment for fatal visceral leishmaniasis (VL) due to Leishmania donovani particularly because of its activity by oral route. In this study, the interaction of HePC with a monolayer of beta-palmitoyl-gamma-oleyl-phosphatidylcholine (POPC) as membrane model or sterol (ergosterol or cholesterol) was investigated. At a constant pressure of 25 mN/m, the adsorption kinetics of HePC into the monolayers showed that HePC molecules are inserted into the monolayer of lipids as monomers until the critical micellar concentration (CMC). At HePC concentrations superior to the CMC, the micelles of HePC are deployed at the interface as groups of monomers into the POPC or sterol monolayer. The study of mixture of HePC/(POPC or sterol), spread at the air-water interface, shows that a simple miscibility between HePC and POPC is observed, whereas a high condensation appears between HePC and sterols showing a high affinity between HePC and sterols. In addition, HePC does not act as detergent disturbing membrane integrity.  相似文献   

17.
This paper is aimed at investigating sterol/phospholipid interactions in the exact proportion that occurs in fungi/mammalian cells. We have performed a thorough analysis of surface pressure (π)–area (A) isotherms with the Langmuir monolayer technique, complemented with Brewster angle microscopy (BAM) images. The following mixtures were analysed: cholesterol (Chol)–dipalmitoyl phosphatidylcholine (DPPC), Chol–dioleoyl phosphatidylcholine (DOPC), ergosterol (Erg)–DPPC, and Erg–DOPC. For each system, two different concentrations of the sterols were used, 13 and 30%, corresponding to the range of concentration found in various natural membranes.The obtained results show the existence of attractive interactions between phospholipids and cholesterol. Mixtures with ergosterol behave quite differently, i.e. either the interactions are repulsive (mixtures with DPPC) or the system is ideal (mixtures with DOPC). The obtained results have implications in the polyene antibiotics mode of action, i.e. the polyenes may interact easier with ergosterol, present in fungi cells, as compared to cholesterol — the main sterol of the mammalian cellular membranes.  相似文献   

18.
19.
The effect of the polyene antibiotic etruscomycin on the permeability of large unilamellar lipid vesicles was investigated. Proton leakage was induced in egg-yolk phosphatidylcholine (EPC) vesicles only when sterol was present in the membrane; the extent of leakage was limited. High etruscomycin/lipid ratios (R) were necessary (R greater than 0.1). Higher percentages of sterol increased the permeability, slightly more strongly for ergosterol than for cholesterol. Dipalmitoylphosphatidylcholine (DPPC) vesicles were more sensitive to permeability inducement, even in the absence of sterol in the bilayer (inducement for R greater than 0.06). The interactions of etruscomycin with the vesicles were examined by circular dichroism, fluorescence and 31P-NMR. In the range of antibiotic concentration where permeability was induced, R greater than 0.1 for EPC vesicles, R greater than 0.06 for DPPC vesicles, etruscomycin exhibited characteristic circular dichroism spectra independent of the presence of sterol. Under the same conditions, 31P-NMR and fluorescence studies indicated a destruction or a fusion of the vesicle bilayer. At lower etruscomycin concentrations (R less than 0.03), the etruscomycin circular dichroism spectra were different, indicating that the interaction with membranes containing ergosterol differed from that with membranes containing cholesterol. From correlating the increase in fluorescence intensity with this interaction, as well as from exchange experiments, it was inferred that etruscomycin at a low antibiotic/lipid ratio is more strongly bound to ergosterol-containing vesicles than to cholesterol-containing vesicles. These results and their comparison with the results obtained with other polyene antibiotics indicate that at low R etruscomycin resembles amphotericin rather than filipin in its preferential binding to ergosterol-containing vesicles. At higher R, that is in conditions where permeability is induced, the selectivity is different. The corresponding mechanism seems not to involve the formation of an etruscomycin-sterol channel, since the hydrophobic chain of the complex would be too short to form a channel.  相似文献   

20.
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号