首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sertoli and peritubular myoid cells, the somatic cells of the seminiferous tubule, support growth and differentiation of developing germ cells. This action strictly depends on the availability of in situ synthesized retinoic acid and we have previously documented the ability of Sertoli, but not peritubular cell extracts, to support the oxidation of retinol to retinoic acid. Using primary cultures of somatic cells treated with a physiological concentration of free retinol, we show here that the same is essentially true also for whole cultured cells. Sertoli cells are capable of producing not only retinoic acid, but are also the major site of retinyl ester (mainly, retinyl palmitate) formation. Compared with retinyl palmitate accumulation, retinoic acid synthesis was both faster and positively influenced by prior exposure to retinol. This increase in retinoic acid synthesis was further augmented by treatment with the retinoic acid catabolic inhibitor liarozole, thus indicating that enhanced synthesis, rather than reduced catabolism, is responsible for such an effect. Myoid cells had a higher capacity to incorporate exogenously supplied retinol, yet retinoic acid synthesis, and even more so retinyl palmitate formation, were considerably lower than in Sertoli cells. Retinoic acid synthesis in myoid cells was not only depressed, but also very little influenced by prior retinol exposure and totally insensitive to liarozole. These data further support the view that myoid cells are involved in retinol uptake from the blood and its transfer to other cells, rather than in metabolic interconversion or long-term storage of vitamin A, two processes that mainly take place in Sertoli cells.  相似文献   

2.
The growth of isolated epithelial and stromal cells from both androgen-dependent normal rat prostate and an androgen-responsive model rat prostate tumor is androgen-independent. When added to co-cultures of epithelial and stromal cells separated by a semipermeable membrane, androgen stimulated epithelial cell growth without an effect on stromal cell growth. Northern blot and nuclease protection analysis of mRNA revealed that stromal cells specifically expressed an androgen-sensitive secreted member of the heparin-binding fibroblast growth factor family [keratinocyte growth factor (KGF)/fibroblast growth factor-7]. KGF was mitogenic for epithelial cells, but not for stromal cells. Epithelial cells expressed specifically a splice variant of the bek receptor gene that specifically binds KGF. Expression of the bek receptor gene in stromal cells was undetectable by Northern blot and nuclease protection analyses. The results suggest that stromal cell-derived KGF has the properties of an andromedin, which mediates the indirect control of epithelial cell proliferation by androgen through a directional stromal-to-epithelial cell paracrine mechanism.  相似文献   

3.
L C Burgess  J O Hall 《Life sciences》2001,69(24):2819-2831
These studies investigated the effects of retinoic acids on endothelial cell proliferation. Three human neoplastic cell lines, U-373 MG glioblastoma, DU-145 prostate carcinoma, and TCCSUP bladder transitional cell carcinoma, were treated with all-trans, 9-cis, or 13-cis retinoic acids at 0.0001 to 10 microM. Hypoxia was used to ensure the expression of the angiogenic phenotype. Conditioned media (CM) were prepared by hypoxic culturing of the tumor cells with retinoic acids for 24 hours. Then CM were transferred to bovine capillary endothelial cells for 48 hours of normoxic culturing, counted and compared to controls. CM from U-373 MG and DU-145 cells, but not TCCSUP cells, treated with all-trans or 9-cis retinoic acids at several concentrations below 1 microM, caused significant (P<0.05) increases in endothelial cell proliferation of between 13 to 18%. Both nonconditioned and conditioned media, for retinoic acid concentrations above 1 microM, inhibited endothelial cell proliferation. All CM for 13-cis retinoic acid decreased endothelial cell proliferation. These results show that the cytotoxicity of retinoic acids and the growth promoting/inhibiting ability of the conditioned media is retinoic acid isoform, time, concentration, and cell type dependent. Most importantly, the conditioned media from tumor cells treated with low concentrations of all-trans or 9-cis retinoic acids significantly increased endothelial cell proliferation.  相似文献   

4.
Interaction of steroids with the nuclear envelope   总被引:2,自引:0,他引:2  
Three approaches have been taken to determine the molecular mechanism by which steroid hormones traverse the nuclear envelope on their way to the genome. The first approach involved characterization of steroid binding to nuclear envelope preparations. We have characterized androgen binding to nuclear envelopes isolated from the rat ventral prostate, the rat liver, and androgen-responsive and androgen-unresponsive cell lines of the Shionogi mouse mammary carcinoma and glucocorticoid binding to rat liver. Relatively high affinity binding sites for steroids have been identified on nuclear envelopes. Importantly, the number and specificity of the sites correlates with the responsiveness of the tissue to the steroid. In the second approach, we have undertaken to identify the steroid binding site directly. As the characteristics of the rat ventral prostate site resembled those of the nuclear androgen receptor, we have begun purifying that receptor and have found fast protein liquid chromatography to be very effective. By affinity labelling studies, the dexamethasone binding site on the rat liver nuclear envelope has been identified as a peptide of molecular weight of approximately 90,000. The third approach we have used is to identify androgen-dependent peptides in nuclear envelope preparations. In both the rat ventral prostate and an androgen-responsive cell line of the Shionogi mouse mammary carcinoma, we have identified abundant androgen-dependent peptides. The relationship of these peptides to the binding sites identified by the first two approaches and their role in steroid transport is being investigated.  相似文献   

5.
6.
7.
Metastatic prostate adenocarcinoma is a leading cause of cancer-related deaths among men. First line treatment is primarily aimed at blocking the synthesis and action of androgens. As primary endocrine treatment, androgen deprivation is usually achieved by orchidectomy or LHRH analogues, frequently combined with androgen receptor antagonists in order to block the residual adrenal androgens. However, nearly all the patients will eventually relapse. Available or potential second line therapies include, among others, alternative endocrine manipulations and chemotherapy.

Cytochrome P450-dependent enzymes are involved in the synthesis and/or degradation of many endogenous compounds, such as steroids and retinoic acid. Some of these enzymes represent suitable targets for the treatment of prostate cancer.

In first line therapy, inhibitors of the P450-dependent 17,20-lyase may achieve a maximal androgen ablation with a single drug treatment. Ketoconazole at high dose blocks both testicular and adrenal androgen biosynthesis but its side-effects, mainly gastric discomfort, limit its widespread use. A series of newly synthesized, more selective, steroidal 17,20-lyase inhibitors related to 17-(3-pyridyl)androsta-5,16-dien-3β-ol, may open new perspectives in this field.

In prostate cancer patients who relapse after surgical or medical castration, therapies aiming at suppressing the remaining adrenal androgen biosynthesis (ketoconazole) or producing a medical adrenalectomy (aminoglutethimide + hydrocortisone) have been used, but are becoming obsolete with the generalization of maximal androgen blockade in first line treatment. The role of inhibition of aromatase in prostate cancer therapy, which was postulated for aminoglutethimide, could not be confirmed by the use of more selective aromatase inhibitors, such as formestane.

An alternative approach is represented by liarozole fumarate (LIA), a compound that blocks the P450-dependent catabolism of retinoic acid (RA). In vitro, it enhances the antiproliferative and differentiation effects of RA in cell lines that express RA metabolism, such as F9 teratocarcinoma and MCF-7 breast carcinoma cells. In vivo, monotherapy with LIA increases RA plasma levels and, to a greater extent, endogenous tissue RA levels leading to retinoid-mimetic effects. In the rat Dunning prostate cancer models, it inhibits the growth of androgen-independent as well as androgen-dependent carcinomas relapsing after castration. Concurrently, changes in the pattern of cytokeratins characteristic of increased differentiation were observed. Early clinical trials show that LIA, in second or third line therapy in metastatic prostate cancer, induces PSA responses in about 30% of unselected patients. In some patients regression of soft tissue metastasis has been observed. In a subgroup of patients, an important relief of metastatic bone pain was also noted.  相似文献   


8.
9.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   

10.
《Translational oncology》2020,13(1):102-112
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo.Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.  相似文献   

11.
A series of rapidly dividing epithelial (RDE) cell lines have been isolated from primary cultures of rat ventral prostate (RVP) epithelial cells. Unlike androgen-dependent secretory epithelial cells, the RDE cells in culture do not express the androgen-dependent secretory proteins, nor do they express the androgen-repressed cell death sequences (TRPM-2) found in the epithelial cells during prostatic regression. Screening of a cDNA clone library established from RDE cell mRNA has yielded a number of RDE cell-specific sequences. One of these, RDE-.25 is a 250-base mRNA. The sequence of RDE-.25 shows considerable homology with the rat growth hormone gene and two murine oncogene sequences. We believe that the absence of androgen-repressed cell death sequence expression confers androgen independence for survival and growth, while the expression of RDE-.25 may represent an autocrine growth stimulus which greatly increases the rate of cell division in these cells.  相似文献   

12.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

13.
The dose- and time-dependent antitumor and cytotoxic effects of L-asparaginases from Erwinia carotovora (ECAR LANS) and Escherichia coli (MEDAC) have been investigated using human leukemic cells and human and animal solid tumor cells. These included human T-cell acute lymphoblastic leukemia cell lines (Jurkat, Jurkat/A4, Molt-4), human chronic myeloid leukemia K562 cells, human promyelocytic leukemia HL-60, and also human solid tumor cells (prostate carcinoma LnCap, breast adenocarcinoma MCF7, ovarian adenocarcinoma SCOV-3 and carcinoma CaOV, hepatocarcinoma Hep G2, fibrosarcoma HT-1080) and animal solid tumor cells (rat Gasser??s ganglion neurinoma cells GGNC-1, mouse glioblastoma EPNT-5). We investigated sensitivity of tumor cells (seeded at different density) to L-asparaginases, as well the effect of L-asparaginases on cell growth rate, protein and DNA synthesis in the presence of various cytostatics. Cell cycle analysis by flow cytofluorimetry and detection of apoptotic cells before and after treatment with L-asparaginases indicate that ECAR LANS L-asparaginase suppressed growth of all tested solid tumor cells. Evaluation of leukemic cell number after treatment with L-asparaginases for 24, 48 and 72 h demonstrated that asparagine deficiency did not kill cells but stopped normal cell division. The cytofluorometric study of solid and leukemic cells revealed that except HL-60 cells the treatment with L-asparaginase for 72 h did not change cell cycle phase distribution and did not increase the number of apoptotic cells. Combined treatment of cells using a combination of L-asparaginase and doxorubicin significantly increased the number of apoptotic cells up to 60% (MCF-7 cells), 40% (Jurkat cells) and even 99% (HL-60). High levels of DNA and protein synthesis rates in asparaginase-treated tumor cells suggest lack of massive entry of tumor cells to apoptosis. This conclusion is based on the fact of sensitivity of multi-resistant Jurkat/A4 cells to L-asparaginases (it is nearly impossible to induce apoptosis in these cells). Since ECAR LANS did not influence growth of normal human fibroblasts it appears that the enzyme cytotoxicity is associated only asparagine deficiency.  相似文献   

14.
Summary We investigated the heterogeneity of cells in terms of androgen responsiveness within a single tumor mass of Shionogi carcinoma SC-115 showing androgen-dependent growth. After cloning of the tumor by the limiting dilution method in the presence of androgen, we isolated 40 clones at random. Twenty-two clones required androgen for growth (androgen-dependent phenotype), 16 did not (androgen-independent phenotype), and the remaining two clones showed growth inhibition when androgen was added (androgen-suppressed phenotype). In addition, 22 androgen-dependent clones showed heterogeneity in growth factor sensitivity in the absence of androgen. All clones were sensitive to both acidic and basic fibroblast growth factor (FGF), 7 of 22 clones were sensitive to epidermal growth factor (EGS) and transforming growth factor (TGF)-α, and 2 of 22 clones were sensitive to TGF-β. This preexisting heterogeneity may be partly responsible for the growth of androgen-dependent tumor under hormone-deprived circumstances. Three typical clones, SC2G, SC1G, and SC4A, were selected from androgen-dependent, -independent, and-suppressed phenotypic groups, respectively. These clones, as well as original solid tumors, were found to produce heparin-binding growth factors of heterogeneous elution positions. The molecular nature of these growth factors is not yet known. Neither anti-basic FGF antibody nor anti-EGF antibody inhibited the cell growth when added in cell culture, suggesting the factors were distinct from basic-FGF and EGF.  相似文献   

15.
B Sato 《Human cell》1989,2(3):246-253
Steroid hormone-responsive cell lines were clones from mouse mammary cancer (Shionogi Carcinoma 115) and Leydig cell tumor. SC-3 and SC-4 cells from Shionogi Carcinoma were androgen-responsive and -unresponsive in a serum-free medium, respectively. SC-3 cells secreted FGF-like growth factor as well as 24 K glycoprotein in response to androgen stimuli. B-1 and B-1F cells from mouse Leydig cell tumor were growth-stimulated in a serum-free medium by estrogen, androgen or retinoic acid. Transfection of ERE-TK-CAT gene into B-1F cells revealed that both estrogen and retinoic acid activated the CAT activity. In addition, the presence of corresponding receptors for steroid hormones or retinoic acid was demonstrated by hormone binding assays and/or Northern blot analysis. Thus, these serum-free culture systems seem to be very useful for analysing hormone action mechanisms in vitro.  相似文献   

16.
The growing incidence of prostate cancer and the traditional use of Rubus coreanus Miquel (RCM) for prostate health led us to compare RCM extracts and to test their efficacy in inhibiting the growth of prostate cancer cells differing in androgen dependency. Ethanol extracts of unripe RCM (EUR) were more effective in reducing cell viability than water extracts or ripe RCM. EUR-induced growth inhibition, as indicated by significant reductions in numbers of proliferating cells and decreases in the protein levels of proliferating cell nuclear antigen (PCNA), cyclin D1 and CDK4, was greater in the androgen-dependent LNCaP cells than in the androgen-independent DU145 cells. EUR also induced mitochondrial-mediated apoptosis in prostate cancer cells by reducing Bcl-2 and Bcl-(X)L levels, but increased Bax levels. Nevertheless, the LNCaP cells were more sensitive to EUR-induced apoptosis and displayed sub-G1 and late apoptotic cell populations, whereas the DU145 cells did not. Our findings suggest that EUR suppresses the growth of prostate cancer cells by anti-proliferative and/or pro-apoptotic effects, and that these effects are stronger in androgen-dependent cells.  相似文献   

17.
alpha-Difluoromethylornithine (DFMO), a highly selective inhibitor of ornithine decarboxylase (ODC), induced terminal differentiation of F9 mouse embryonal carcinoma cells in culture. Differentiation was assessed using morphological criteria and the level of plasminogen activator activity. The observed phenotypic changes and the fact that the cells did not synthesize alpha-fetoprotein, indicate that they were parietal endoderm cells. The putrescine, spermidine and spermine content of untreated control cells increased during exponential growth and then decreased gradually with continued time in culture. The increases in putrescine and spermidine contents were prevented by DFMO treatment. In fact, the putrescine and spermidine content decreased below the limits of detection after only one day of treatment. The addition of putrescine to the culture medium at any time within 4 days of DFMO treatment, prevented the DFMO-induced differentiation, suggesting that the effects observed were indeed caused by polyamine depletion. The phenotypic changes induced by DFMO were similar to those induced by retinoic acid, a very potent inducer of embryonal carcinoma differentiation. Although retinoic acid can inhibit ODC activity and putrescine accumulation, it is unlikely that this mechanism of action is responsible for retinoic acid-induced F9 cell differentiation, inasmuch as putrescine addition did not prevent the expression of the differentiated phenotype. Undifferentiated F9 embryonal carcinoma cells exhibited a very short G1 phase, and in this respect they are similar to the cells of the preimplantation mouse embryo. In control (exponentially growing) cultures a majority of the F9 cells were in the S phase, but in DFMO-treated cultures they accumulated in the G1 phase and showed no further proliferative potential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Conjugated linoleic acid (CLA) is a dietary fatty acid that has been shown to reduce tumorigenesis and metastasis in breast, prostate and colon cancer in animals. However, the mechanism of its action has not been clarified. The goal of this study was to determine whether CLA altered mouse mammary tumor cell growth and whether specific metabolites of the lipoxygenase pathway were involved in CLA action. Both t10, c12-CLA and a lipoxygenase inhibitor, but not c9, t11-CLA or linoleic acid (LA), reduced mouse mammary tumor cell viability and growth by inducing apoptosis and reducing cell proliferation. t10, c12-CLA reduced the production of the 5-lipoxygenase metabolite, 5-hydroxyeicosatetraenoic acid (5-HETE). That effect was not seen with c9, t11-CLA or LA. Adding 5-HETE back to tumor cells reduced the t10, c12-CLA effect on both apoptosis and cell proliferation. These data suggest that t10, c12-CLA reduction of tumor cell growth may involve the suppression of the 5-lipoxygenase metabolite, 5-HETE, with subsequent effects on apoptosis and cell proliferation.  相似文献   

19.
The growth of the majority of prostate tumors is androgen-dependent, for which the presence of a functional androgen receptor is a prerequisite. Tumor growth can be inhibited by blockade of androgen receptor action. However, this inhibition is transient. To study the role of the androgen receptor in androgen-dependent and androgen-independent prostate tumor cell growth, androgen receptor mRNA expression was monitored in six different human prostate tumor cell lines and tumors, which were grown either in vitro or by transplantation on (male) nude mice. Androgen receptor mRNA was clearly detectable in three androgen-dependent (sensitive) tumors and absent or low in three androgen-independent tumors. Growth of the LNCaP prostate tumor cell line can be stimulated both by androgens and by fetal calf serum. In the former situation androgen receptor mRNA expression is downregulated, whereas in the latter no effect on androgen receptor mRNA levels can be demonstrated. Sequence analysis showed that the androgen receptor gene from LNCaP cells contains a point mutation in the region encoding the steroid-binding domain, which confers an ACT coVon encoding a threonine residue to GCT, encoding alanine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号