首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of abscisic acid (ABA) in drought tolerance of Coffea canephora is unknown. To determine whether ABA is associated with drought tolerance and if the use of tolerant rootstocks could increase ABA and drought tolerance, we performed reciprocal grafting experiments between clones with contrasting tolerance to drought (clone 109, sensitive; and clone 120, tolerant). Plants were grown in large (120 L) pots in a greenhouse and subjected to drought stress by withholding irrigation. The non-grafted 120 plants and graft treatments with 120 as a rootstock showed a slower reduction of predawn leaf water potential (Ψpd) and a lower negative carbon isotopic composition ratio compared with the other grafting combinations in response to drought. The same 120 graft treatments also showed higher leaf ABA concentrations, lower levels of electrolyte leakage, and lower activities of ascorbate peroxidase and catalase under moderate (Ψpd?=???1.0 or ??1.5 MPa) and severe (Ψpd?=???3.0 MPa) drought. Root ABA concentrations were higher in plants with the 120 rootstocks regardless of watering regime. The 120 shoots could also contribute to drought tolerance because treatment with 120/109 rootstock/scion combination showed postponed dehydration, higher leaf ABA concentration, and lower leaf electrolyte leakage compared with the sensitive clone. We conclude that both the shoot and root systems of the tolerant clone can increase the concentrations of ABA in leaves in response to drought. This further suggests that ABA is associated with a delayed onset of severe water deficit and decreased oxidative damage in C. canephora.  相似文献   

2.
Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.  相似文献   

3.
The effects of drought on membrane lipids and leaf pigments and the ability of andiroba (Carapa guianensis Aubl.) plants to attenuate oxidative damage through antioxidant enzymes or adjusting carotenoids and glycinebetaine (GB) were examined. Assessments were performed when pre-dawn leaf water potential (Ψpd) of water-stressed plants reached −1.35 and −3.21 MPa (15 and 27 days after withholding irrigation) and 12 h after resuming watering (short-term rewetting, day 28). Oxidative damages to lipids were evident on day 15, in which drought caused an increase of 47% in malondialdehyde (MDA) content. On day 27, MDA content did not differ between treatments. The activity of superoxide dismutase remained unchanged over experimental period, while significant increases in the ascorbate peroxidase (APX, 110%) and catalase (CAT, 50%) activities were observed only on day 27. GB content was 62% (day 15) and 112% (day 27) higher in water-stressed plants than in control. Regardless of Ψpd, both chlorophyll (Chl) a, Chl b and total carotenoids remained unchanged between well-watered and water-stressed plants, indicating that drought did not result in degradation of leaflet pigments. On day 28, Ψpd of water-stressed plants increased near to control plants and both activities of APX and CAT did not differ between treatments. Altogether, adjustments in APX and CAT activity and in the GB content were efficient strategies to prevent expressive oxidative damages in water-stressed andiroba plants.  相似文献   

4.
狭叶红景天幼苗对水分及遮阴的生长及生理生化响应   总被引:2,自引:0,他引:2  
研究植物对水分和遮阴胁迫的响应及其生理机制对制定合理的栽培管理措施十分必要。以红景天属植物为研究对象,设置土壤含水量分别为田间持水量的80%(过湿水分)、70%(正常水分)、60%(轻度干旱)、40%(中度干旱)、20%(重度干旱)5个水分梯度;设置2个遮阴处理,以全光照(遮阴率为0)为对照、黑色遮阴网遮阴(遮阴率为85%),研究狭叶红景天生长及生理生化指标的变化特征。结果表明:在不同水分处理下,与对照相比,叶绿素含量、茎干重和茎重比(SMR)显著增加(P0.05),株高、总生物量、叶面积、叶干重、叶重比(LMR)、比叶面积(SLA)、叶面积比(LAR)和叶面积根干重比(LARMR)增加,根冠比和根重比(RMR)减少;随着干旱程度加剧,丙二醛(MDA)、脯氨酸(Pro)和可溶性糖(Ss)含量增加,超氧化物歧化酶(SOD)活性总体呈先增加后减小的趋势。在遮阴处理下,株高、SMR、SLA、LAR和LARMR显著增加(P0.05),叶绿素SPAD值和叶面积增加,总生物量、根干重、根冠比和LMR显著减少(P0.05),茎干重和叶干重减少,MDA含量显著增加,Pro含量略有下降,Ss含量减少。在水分胁迫下,狭叶红景天中度干旱时通过增加酶活性抵御伤害,重度干旱超过其阈值,SOD活性下降,植物体受到伤害,Ss可能是主要的渗透调节物质。在遮阴处理下,狭叶红景天通过增加SLA避免遮阴伤害。狭叶红景天在受到环境胁迫时会通过形态改变、调节MDA含量、抗氧化酶活性和渗透调节物质来保证自身正常的生长发育。  相似文献   

5.
Geranium plants are an important part of urban green areas but suffer from drought, especially when grown in containers with a limited volume of medium. In this experiment, we examined the response of potted geraniums to different irrigation levels. Geranium (Pelargoniumxhortorum L.) seedlings were grown in a growth chamber and exposed to three irrigation treatments, whereby the plants were irrigated to container capacity (control), 60% of the control (moderate deficit irrigation, MDI), or 40% of the control (severe deficit irrigation, SDI). Deficit irrigation was maintained for 2 months, and then all the plants were exposed to a recovery period of 112 month. Exposure to drought induced a decrease in shoot dry weight and leaf area and an increase in the root/shoot ratio. Height and plant width were significantly inhibited by the SDI, while flower color parameters were not affected by deficit treatment. The number of wilting and yellow leaves increased, coinciding with the increase in the number of inflorescences and open flowers. Deficit irrigation led to a leaf water potential of about -0.8MPa at midday, which could have caused an important decrease in stomatal conductance, affecting the photosynthetic rate (Pn). Chlorophyll fluorescence (Fvm) values of 0.80 in all treatments throughout the experiment demonstrate the lack of drought-induced damage to PSII photochemistry. Pressure-volume analysis revealed low osmotic adjustment values of 0.2MPa in the SDI treatment, accompanied by increases in the bulk tissue elastic modulus (epsilon, wall rigidity) and resulting in turgor loss at lower leaf water potential values (-1.38MPa compared with -1.0MPa for the control). Leaf water potential values throughout the experiment below those for Psitlp were not found at any sampling time. By the end of the recovery period, the leaf water potential, stomatal conductance and net photosynthesis had recovered. We infer from these results that moderate deficit irrigation in geranium reduced the consumption of water, while maintaining the good overall quality of plants. However, when SDI was applied, a reduction in the number of flowers per plant was observed.  相似文献   

6.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

7.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Early signals potentially regulating leaf growth and stomatal aperture in field-grown maize (Zea mays L.) subjected to drought were investigated. Plants grown in a field lysimeter on two soil types were subjected to progressive drought during vegetative growth. Leaf ABA content, water status, extension rate, conductance, photosynthesis, nitrogen content, and xylem sap composition were measured daily. Maize responded similarly to progressive drought on both soil types. Effects on loam were less pronounced than on sand. Relative to fully-watered controls, xylem pH increased by about 0.2 units one day after withholding irrigation (DAWI) and conductivity decreased by about 0.25 mS cm(-1) 1-3 DAWI. Xylem nitrate, ammonium, and phosphate concentrations decreased by about 50% at 1-5 DAWI and potassium concentration decreased by about 50% at 7-8 DAWI. Xylem ABA concentration consistently increased by 45-70 pmol ml(-1) at 7 DAWI. Leaf extension rate decreased 5 DAWI, after the changes in xylem chemical composition had occurred. Leaf nitrogen significantly decreased 8-16 DAWI in droughted plants. Midday leaf water potential and photosynthesis were significantly decreased in droughted plants late in the drying period. Xylem nitrate concentration was the only ionic xylem sap component significantly correlated to increasing soil moisture deficit and decreasing leaf nitrogen concentration. Predawn leaf ABA content in droughted plants increased by 100-200 ng g(-1) dry weight at 7 DAWI coinciding with a decrease in stomatal conductance before any significant decrease in midday leaf water potential was observed. Based on the observed sequence, a chain of signal events is suggested eventually leading to stomatal closure and leaf surface reduction through interactive effects of reduced nitrogen supply and plant growth regulators under drought.  相似文献   

9.
Inhomogeneous photosynthetic activity has been reported to occur in drought-stressed leaves. In addition, it has been suggested that these water stress-induced nonuniformities in photosynthesis are caused by “patchy” stomatal closure and that the phenomenon may have created the illusion of a nonstomatal component to the inhibition of photosynthesis. Because these earlier studies were performed with nonacclimated growth chamber-grown plants, we sought to determine whether such “patches” existed in drought-treated, field-grown plants or in chamber-grown plants that had been acclimated to low leaf water potentials (ψleaf). Cotton (Gossypium hirsutum L.) was grown in the field and subjected to drought by withholding irrigation and rain from 24 d after planting. The distribution of photosynthesis, which may reflect the stomatal aperture distribution in a heterobaric species such as cotton, was assayed by autoradiography after briefly exposing attached leaves of field-grown plants to 14CO2. A homogeneous distribution of radioactive photosynthate was evident even at the lowest ψleaf of −1.34 MPa. “Patchiness” could, however, be induced by uprooting the plant and allowing the shoot to air dry for 6 to 8 min. In parallel studies, growth chamber-grown plants were acclimated to drought by withholding irrigation for three 5-d drought cycles interspersed with irrigation. This drought acclimation lowered the ψleaf value at which control rates of photosynthesis could be sustained by approximately 0.7 MPa and was accompanied by a similar decline in the ψleaf at which patchiness first appeared. Photosynthetic inhomogeneities in chamber-grown plants that were visible during moderate water stress and ambient levels of CO2 could be largely removed with elevated CO2 levels (3000 μL L−1), suggesting that they were stomatal in nature. However, advanced dehydration (less than approximately 2.0 MPa) resulted in “patches” that could not be so removed and were probably caused by nonstomatal factors. The demonstration that patches do not exist in drought-treated, field-grown cotton and that the presence of patches in chamber-grown plants can be altered by treatments that cause an acclimation of photosynthesis leads us to conclude that spatial heterogeneities in photosynthesis probably do not occur frequently under natural drought conditions.  相似文献   

10.
The aims of this study were to investigate the effects of water deficit and recovery on growth, photosynthesis and water relations in four Medicago laciniata populations from saharian (Ml-90), inferior arid (Ml-204), superior arid (Ml-306) and semi-arid (Ml-376) Tunisian regions. After 28 d of sowing with ample irrigation, the plants were subjected to 4 water regimes: optimal irrigation (100% of field capacity, FC), moderate drought (75% FC), severe drought (35% FC) and rewatering (plants submitted to 35% FC during 7 d, afterwards the plants were rewatered to 100% FC). Harvest was carried out after 28 d of treatments. The drought tolerance in M. laciniata populations was found to be increased particularly with increasing temperatures of collection site of the population. The Ml-204 and Ml-90 populations used mainly physiological strategies for survival under moderate water shortage. Higher severe drought tolerance in both signaled populations would be related to their lower photosynthesis metabolic impairment, relatively higher leaf RWC and greater osmotic potential decrease. The results suggest that plants with low values of leaf features are likely to maintain higher leaf RWC under sever drought. The largest decrease of osmotic potential was found associated with the solute accumulations such as proline and K+.  相似文献   

11.
Soil columns in which the root system was divided into threeequal layers, each 24 cm in diameter and 33 cm high were usedto examine the influence of drying different proportions ofthe root system on the water relations, gas exchange and abscisicacid (ABA) concentration of lupin (Lupinus cosentinii Guss.cv. Eregulla) leaves. The treatments imposed were (i) all threelayers adequately watered (control), (ii) the upper layer unwateredwith the remaining layers kept adequately watered, (iii) thetwo upper layers unwatered with the basal layer kept adequatelywatered, (iv) all three layers unwatered. The treatments wereapplied at 56 d after sowing (DAS), and continued for 21 d inthe treatment in which the three layers were dried and for 36d in the other three treatments. After 21 d, the soil matricpotential in the layers that were unwatered had decreased toemdash 1.3MPa, compared to - 0.03 MPa in the adequately-wateredlayers. Within 8 d of cessation of watering, plants with the entireroot system in drying soil had significantly lower stomatalconductances, lower rates of net photosynthesis, and higherleaf ABA contents than did adequately-watered plants. Whilethe leaf osmotic potential decreased within 8 d of cessationof watering, the leaf water potential did not change for thefirst 15 d after water was withheld. After withholding waterfrom all layers, the shoot dry matter was 63% lower than thatin the adequately-watered plants. In the two partially-droughtedtreatments, 17% and 48% of the root length was subjected todrying. Compared to the adequately-watered plants, drying upto 50% of the root system for 36 d, in the two partially-droughtedtreatments, did not reduce stomatal conductance, net photosynthesis,or plant growth. Similarly, there was no significant effecton leaf water potential or osmotic potential. When either theupper or upper and middle layers of soil were dried, the ABAcontent of the leaves for most of the drying period was slightly,but not significantly, higher than in leaves of the adequately-wateredplants. The results suggest that lupins with a well-established rootsystem can utilize localized supplies of available soil waterto maintain leaf gas exchange despite appreciable portions ofthe root system being in dry soil. In contrast to other studies,the results also suggest that when only a portion of the soilvolume is dry and adequate water is available in the wet zone,root signals do not influence stomatal conductance and leafgas exchange of lupin. Key words: Abscisic acid, gas exchange, lupins, split-roots, water deficit  相似文献   

12.
Various clones of tea [Camellia sinensis (L.) O. Kuntze] such as TTL-1, TTL-2, TTL-4, TTL-5, TTL-6, UPASI-2 and UPASI-3 planted in the field were subjected to soil moisture stress conditions by withholding irrigation. A control set of the same clones were maintained by watering regularly. The soil water content of the irrigated and non irrigated plants was monitored through the soil moisture status. The extent of effect of drought on tea plants were monitored through various physiological parameters such as shoot weight, leaf water potential, chlorophyll and carotenoid content, chlorophyll fluorescence (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance and biochemical parameters such as extent of proline accumulation and free radical generation. These parameters were studied on the 30 d of non irrigation and on the 5 d during recovery from drought. The plants recovered when re-irrigated after 30 d of non-irrigation, which suggests that permanent wilting did not occur due to non-irrigation up to 30 d. On the 30 d of non-irrigation the clones TTL-1, TTL-6 and UPASI-2 showed lesser reduction of shoot weight, leaf water potential, chlorophyll fluorescence, photosynthetic rate, transpiration rate and stomatal conductance and increased proline and lesser lipid peroxidation as compared to the other clones. From these results it can be concluded that the clones TTL-1, TTL-6 and UPASI-2 are comparatively more drought tolerant than the clones TTL-2, TTL-4, TTL-5 and UPASI-3.  相似文献   

13.
Three- and four-year-old potted, greenhouse-grown cedar seedlings were subjected to two different watering regimes: half received full water supply and the other half was submitted to moderate drought (50% of the full water supply). Height growth was the greatest for C. atlantica and the most-limited for C. brevifolia in the well-watered set. However, in the dry set, height growth was less affected by drought conditions for C. brevifolia than for C. atlantica. Cedrus libani gave intermediate results for both watering regimes. Moderate drought provoked a decrease in osmotic potential at full leaf turgor and a long-lasting osmotic adjustment. When irrigation was withheld completely to induce severe soil drying, gas exchange decreased and then stopped at predawn water potentials of −3.0 MPa for C. brevifolia, between −2.6 and −2.8 MPa for C. libani, and at −2.4 MPa for C. atlantica, irrespective of watering regime. For all species, the dry set showed lower net photosynthesis (A) and stomatal conductance (g s) than the plants in the well-watered set. A and g s responded to variations in atmospheric water-vapour pressure deficit (VPD). As VPD increased, A and g s decreased, and this trend was proportionate to initial values at low VPD, but remained independent of previous watering treatments, plant water status or species. To conclude, C. brevifolia appears to be a species with limited growth potential but strong soil drought tolerance whereas C. atlantica has strong growth potential when an adequate water supply is available but is more sensitive to soil drought. C. libani shows an intermediate behaviour for growth and drought tolerance.  相似文献   

14.
Leaf water characteristics and drought acclimation in sunflower genotypes   总被引:1,自引:0,他引:1  
Maury  P.  Berger  M.  Mojayad  F.  Planchon  C. 《Plant and Soil》2000,223(1-2):155-162
The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 < −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The ability to recover from drought stress after re‐watering is an important feature that will enable plants to cope with the predicted increase in episodic drought. The effects of pre‐drought and re‐watering conditions on leaf spectral properties and their relationships with the biochemical processes that underlie the recovery from pre‐drought conditions should be better understood. The reflectance spectra, 10 spectral reflectance indices (SRIs) and biochemical characteristics of maize (Zea mays) leaves were monitored 7, 14, 21 and 28 days after the initiation of soil drought stress during two successive cycles of drought and re‐watering periods. The leaf reflectance of the two inbred maize lines increased under the drought stress, especially in the visible spectral range. In addition, an obvious recovery of the leaf reflectance was only observed in the first re‐watering period, and its value remained higher than that of the control plants during the second recovery period. A recovery lag in the pigment contents was also observed during the second cycle. The recovery variations in the pattern and magnitude of the SRIs and the total contents of C, N and P that were measured in response to the re‐watering during both cycles were diverse and complex; both full and partial recoveries were observed. The SRIs representing different physiological attributes of plant growth, including the water index, red edge position, photochemical reflectance index and near‐infrared reflectance at 800 nm, showed strong linear relationships (P < 0.01 or 0.05) with the growth and biochemical traits across the successive drought and re‐watering cycles. The results suggest that maize plants can adjust their leaf reflectance properties and employ growth and biochemical strategies to adapt to cyclic drought stress and recover from drought stress after re‐watering.  相似文献   

16.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

17.
Abstract. Pressure chamber (PC) and thermocouple pyschrometer (TP) were used to determine leaf water potential in tomato ( Lycopersicon esculentum Mill.), eggplant ( Solanum melongena L.) and bean ( Phaseolus vulgaris L.) seedlings subjected to normal watering regime, drought or chilling temperature. The PC readings were corrected for apoplastic osmotic potential. Similar results were obtained in all species. In unchilled plants, the PC and TP measurements corresponded within a potential range of -0.1 to -2.5MPa, but discrepancies between the two methods often occurred in chilled plants, with PC water potentials 0.2 to 1.4 MPa higher (less negative) than TP values. The PC measurements appeared spuriously high in chilled plants. In droughted plants leaf dehydration occurred in both the blade and the petiole, whereas in chilled plants, water deficit was generally observed only in the blade.  相似文献   

18.
夏玉米叶片气体交换参数对干旱过程的响应   总被引:2,自引:0,他引:2  
麻雪艳  周广胜 《生态学报》2018,38(7):2372-2383
目前已经开展了大量的干旱对作物叶片气体交换参数影响的研究,但关于作物叶片气体交换参数对干旱过程的响应及其关键阈值的研究仍较少。基于夏玉米七叶期开始的5个初始水分梯度的长时间持续干旱模拟实验资料,分析了不同强度持续干旱过程中夏玉米叶片气体交换参数(净光合速率Pn,气孔导度Gs,蒸腾速率Tr,胞间CO_2浓度Ci和气孔限制值Ls)的变化规律及其关键阈值。结果表明,玉米的净光合速率(Pn),蒸腾速率(Tr)和气孔导度(Gs)在干旱发生初期呈大幅度下降,但随着干旱持续会出现一定的适应性。利用统计容忍限方法确定了夏玉米拔节期Pn,Tr和Gs响应干旱的临界土壤相对湿度(0—30cm)分别为53%,51%和48%,对应的临界叶含水率分别为81.8%,81.3%和81.2%。夏玉米光合作用由气孔限制向非气孔限制转换的0—30cm土壤相对湿度均为44%±2%,对应的叶含水率均为77.6%±0.3%。研究结果可为夏玉米干旱发生发展过程的监测预警提供依据。  相似文献   

19.
20.
Yearling beef heifers (n = 193) were used to evaluate reproductive performance attained with 2 MGA-PGF(2)alpha synchronization systems. These treatments were compared with an untreated control group. The 14-d MGA heifers were synchronized by feeding 0.5 mg MGA/h/d for 14 d. At 17 d after the last MGA feeding, these heifers were injected with PGF(2)alpha (25 mg, im). Heifers in the 7-d MGA treatment group were fed 0.5 mg MGA/h/d for 7 d and received a 25-mg, im injection of PGF(2)alpha on the last day of the MGA feeding period. Heifers in all 3 treatment groups were observed for estrus every 12 h for 7 d beginning 24 h after the PGF(2)alpha injection. Heifers observed in estrus during this 7-d period were artificially inseminated approximately 12 h after the onset of estrus. The percentages of heifers in estrus during the 7-d synchronized period were 75.4, 56.3 and 17.2% for the 14-d MGA, 7-d MGA and control groups, respectively. The estrous responses were significantly different in each treatment. The percentage of heifers in estrus during the peak 24-h period was higher (P < 0.05) in heifers synchronized with the 14-d MGA system than in heifers synchronized with the 7-d MGA system (75.5 vs 50.0%). The synchronized conception rate of the 14-d MGA heifers was significantly higher (65.3%) than that of both the 7-d MGA (41.7%) and control (45.4%) heifers. Synchronized conception rates were similar (P = 0.79) in the 7-d MGA and control treatments. Synchronized pregnancy rates were 55.2, 32.4 and 15.2% for the 14-d MGA, 7-d MGA and control groups, respectively. Both synchronization treatments resulted in significantly higher synchronized pregnancy rates compared with that of the controls. The synchronized pregnancy rate was higher (P < 0.05) in the 14-d MGA group than it was in the 7-d MGA group. The mean day of conception within the breeding season was 11.5 and 9.3 d shorter in the 14-d MGA heifers than in the 7-d MGA and control heifers, respectively. Our results indicate that using the 14-d MGA system to synchronize estrus in beef heifers results in better reproductive performance than that attained in heifers synchronized with the 7-d MGA system or in control heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号