首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
Novel aerobic granular sludge membrane bioreactor (GMBR) was established by combining aerobic granular sludge technology with membrane bioreactor (MBR). GMBR showed good organics removal and simultaneous nitrification and denitrification (SND) performances for synthesized wastewater. When influent total organic carbon (TOC) was 56.8-132.6 mg/L, the TOC removal of GMBR was 84.7-91.9%. When influent ammonia nitrogen was 28.1-38.4 mg/L, the ammonia nitrogen removal was 85.4-99.7%, and the total nitrogen removal was 41.7-78.4%. Moreover, batch experiments of sludge with different particle size demonstrated that: (1) flocculent sludge under aerobic condition almost have no denitrification capacity, (2) SND capacity was caused by the granular sludge, and (3) the denitrification rate and total nitrogen removal efficiency were enhanced with the increased particle size. In addition, study on the sludge morphology stability in GMBR showed that, although some granular sludge larger than 0.9 mm disaggregated at the beginning of operation, the granular sludge was able to maintain the stability of its granular morphology, and at the end of operation, the amount of granular sludge (larger than 0.18 mm) stabilized in GMBR was more than 56-62% of the total sludge concentration. The partial disaggregation of large granules is closely associated with the change of operating mode from sequencing batch reactor (SBR) system to MBR system.  相似文献   

2.
In order to enhance performances of organics removal and nitrification for the treatment of swine wastewater containing high concentration of organic solids and nitrogen than conventional biological nitrogen removal process, a submerged membrane bioreactor (MBR) was followed by an anaerobic upflow bed filter (AUBF) reactor in this research (AUBF–MBR process). The AUBF reactor is a hybrid reactor, which is the combination of an anoxic filter for denitrification and upflow anaerobic sludge blanket (UASB) for acid fermentation. In the AUBF–MBR process, it showed a considerable enhancement of the effluent quality in terms of COD removal and nitrification. The submerged MBR could maintain more than 14,000 mg VSS/L of the biomass concentration. Total nitrogen (T-N) removal efficiency represented 60% when internal recycle ratio was three times of flow-rate (Q), although the nitrification occurred completely. Although the volatile fatty acids produced in AUBF reactor can enhance denitrification rate, but the AUBF–MBR process showed reduction of overall removal efficiency of the nitrogen due to the reduction of carbon source by methane production in the AUBF reactor compared to that of theoretical nitrogen removal efficiency.

Long-term operation of the submerged MBR showed that the throughputs of the submerged MBR were respectively 74, 63, and 31 days at 10, 15, and 30 L/m2 h (LMH) of permeate flux. Resistance to filtration by rejected solid is the primary cause of fouling, however the priority of cake resistance (Rc) and fouling resistance (Rf) with respect to filtration phenomenon was different according to the amount of permeate flux. The submerged MBR, here, achieved a steady-state flux of 15 LMH at 0.4 atm. of trans-membrane pressure (TMP) but the flux can be enhanced in the future because shear force by tangential flow will be greater when multi-layer sheets of membrane were used.  相似文献   


3.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

4.
An Y  Yang F  Chua HC  Wong FS  Wu B 《Bioresource technology》2008,99(9):3714-3720
A combined system consisting of an up-flow anaerobic sludge blanket (UASB) and an aerobic membrane bioreactor (MBR) was operated at 28-30 degrees C and pH 7.8-8.1 for the treatment of low-strength synthetic wastewater enriched with organic carbon and NH4Cl. The MBR slurry was recirculated into the UASB with a ratio of 50-800%. It was found that nitrite was able to accumulate steadily during the nitrification step in the MBR at a low TOC/NH4+-N ratio. The mixed liquid containing NOX(-)-N in the MBR was recirculated to the UASB, and denitrification rather than methanogenesis became the preferred pathway. Whereas, the less carbon requirement for denitrification via nitrite rather than nitrate allowed methanogenesis to proceed simultaneously in the same reactor. The combination of membrane filtration and partial nitrification in the MBR with simultaneous denitrification and methanogenesis in the UASB could stably reach 98% TOC removal and 48.1-82.8% TN removal with recirculation ratio increasing from 50% to 800%.  相似文献   

5.
The objective of this study was to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor. During a 140-day long-term operation, influent pH value, dissolved oxygen (DO), and chemical oxygen demand/nitrogen (COD/N) ratio were selected as operating factors to evaluate the maintenance and recovery of nitrite accumulation. Results showed that high DO concentration (2–4 mg/L) could damage nitrite accumulation immediately. However, nitrite accumulation ratio (NAR) could be increased from 1.68?±?1.51 to 35.46?±?7.86 % when increasing the pH values from 7.5 to 8.3 due to the increased free ammonia concentration. Afterwards, stable partial nitrification and high NAR could be recovered when the reactor operated under low DO concentration (0.5–1.0 mg/L). However, it required a long time to recover the partial nitrification of the reactor when the influent COD/N ratios were altered. Fluorescence in situ hybridization analysis implied that ammonium oxidizing bacteria were completely recovered to the dominant nitrifying bacteria in the system. Meanwhile, sludge volumetric index of the reactor gradually decreased from 115.6 to 56.6 mL/g, while the mean diameter of sludge improved from74.57 to 428.8 μm by using the strategy of reducing settling time. The obtained results could provide useful information between the operational conditions and the performance of partial nitrification when treating nitrogen-rich industrial wastewater.  相似文献   

6.
Chang CY  Tanong K  Xu J  Shon H 《Bioresource technology》2011,102(9):5337-5344
A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a β-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit.  相似文献   

7.
Nitrification performance of a chemostat and a membrane-assisted bioreactor (MBR) was assessed at pilot scale for the treatment of sludge reject waters with NH4+-N concentrations up to 600 mg/L and low organic content (COD<200 mg/L). To prevent nitrifier washout the 1-m3 chemostat was operated at 20°C with minimum hydraulic retention time of F=2 days. At the 0.71 m3 MBR, F was successively reduced to 6.2 h. Complete sludge retention was achieved by means of a 2-m2 100,000-Dalton PES ultrafiltration membrane. Operation in crossflow mode with flow velocities from vF=2.4-3.7 m/s and transmembrane pressures (p=0.5-1.2 bar yielded a long-term permeate flux of 110 L/(m22h). In the MBR, nitrification rates up to 2,500 g N/(m32d) were measured with biomass concentrations between 4 and 15 g TSS/L. Despite low TSS values, about 0.2 g/L of the chemostat was able to nitrify 180 g N/(m32d). The microbial community composition differed considerably between the two reactors as determined by fluorescent in situ hybridisation (FISH) with rRNA-targeted oligonucleotide probes. For both reactors, the relative abundance of ammonia and nitrite oxidisers measured by FISH was consistent with results from dynamic simulation of the nitrification process.  相似文献   

8.
Li YZ  He YL  Ohandja DG  Ji J  Li JF  Zhou T 《Bioresource technology》2008,99(13):5867-5872
This study assessed the performance of different single-stage continuous aerated submerged membrane bioreactors (MBR) for nitrogen removal. Almost complete nitrification was achieved in each MBR irrespective of operating mode and biomass system. Denitrification was found to be the rate-limiting step for total nitrogen (T-N) removal. The MBR with internal-loop airlift reactor (ALR) configuration performed better as regards T-N removal compared with continuous stirred-tank reactor (CSTR). It was demonstrated that simultaneous nitrification and denitrification (SND) is the mechanism leading to nitrogen removal and the contribution of microenvironment on SND is more remarkable for the MBRs with hybrid biomass. Macroenvironment analyses showed that gradient distribution of dissolved oxygen (DO) level in airlift MBRs imposed a significant effect on SND. Higher mixed liquor suspended solid (MLSS) concentration led to the improvement in T-N removal by enhancing anoxic microenvironment. Apparent nitrite accumulation coupled with higher nitrogen reduction was accomplished at MLSS concentration exceeded 12.6 g/L.  相似文献   

9.
A hydrogenotrophic denitrification system was evaluated in removing nitrate from synthetic aquaculture wastewater for recirculation purposes. Two membrane bioreactor (MBR) systems, namely, aeration–denitrification system (ADS) and denitrification–aeration system (DAS) were studied with 50 mg/L of influent concentrations for both organic matter and nitrate nitrogen. The DAS achieved better removal efficiency of 91.4% total nitrogen (T-N) and denitrification rate of 363.7 mg/L.day at a HRT of 3 h compared to ADS. Further, there was no nitrite accumulation in the DAS effluent. The nitrite accumulation in ADS effluent was lesser when CO2 was used as buffer rather than K2HPO4 and KH2PO4. Estimation of kinetic parameters of hydrogenotrophic bacteria indicated lesser sludge production compared to heterotrophic denitrification. In the DAS, membrane fouling was nonexistent in the aeration reactor that was used to produce the recirculating effluent. On the contrary, membrane fouling was observed in the denitrification reactor that supplied hydrogen to the mixed liquor. Thus, this study demonstrated DAS capability in maintaining the acceptable water quality appropriate for aquaculture, in which a closed recirculating system is typically used.  相似文献   

10.
Sewage treatment by a low energy membrane bioreactor   总被引:2,自引:0,他引:2  
A new membrane bioreactor (MBR) was developed for treatment of municipal wastewater. The MBR was mainly made up of an activated sludge reactor and a transverse flow membrane module, with an innovative configuration being in application between them. As a result, the transverse flow membrane module and low recirculation flow rate created advantages, such as lower energy consumption and more resistance to membrane fouling. The total energy consumption in the whole system was tested as 1.97+/-0.74 kWh/m(3) (permeate) while using periodical backwash with treated water and backflush with mixed liquor daily, being in the same level as a submerged membrane bioreactor, reported to be 2.4 kWh/m(3) (permeate). Energy consumption analysis in the system shows that the membrane module was more energy consuming than the other four parts listed as pump, aeration, pipe system and return sludge velocity lose, which consumed 37.66-52.20% of the total energy. The effluent from this system could be considered as qualified for greywater reuse in China, showing its potential application in the future.  相似文献   

11.
Effect of low dissolved oxygen on simultaneous nitrification and denitrification was evaluated in a membrane bioreactor treating black water. A fully aerobic membrane bioreactor was operated at a sludge age of 60 days under three low dissolved oxygen (DO) levels below 0.5mg/L. It sustained effective simultaneous nitrification/denitrification for the entire observation period. Nitrification was incomplete due to adverse effects of a number of factors such as low DO level, SMPs inhibition, alkalinity limitation, etc. DO impact was more significant on denitrification: Nitrate was fully removed at low DO level but the removal was gradually reduced as DO was increased to 0.5mg/L. Nitrogen removal remained optimal within the DO range of 0.15-0.35 mg/L. Experimental results were calibrated and simulated by model evaluation with the same model coefficients. The model defined improved mass transfer with lower affinity coefficients for oxygen and nitrate as compared to conventional activated sludge.  相似文献   

12.
Biological hydrogen production using a membrane bioreactor   总被引:6,自引:0,他引:6  
A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.  相似文献   

13.
Much attention has been devoted recently to the fate of pharmaceutically active compounds such as tetracycline antibiotics in soil and water. Tetracycline (TC) biodegradability by activated sludge derived from membrane bioreactor (MBR) treating swine wastewater via CO2-evolution was evaluated by means of modified Sturm test, which was also used to evaluate its toxicity on carbon degradation. The impact of tetracycline on a semi-industrial MBR process was also examined and confronted to lab-scale experiments. After tetracycline injection in the pilot, no disturbance was detected on the elimination of organic matters and ammonium (nitrification), reaching after injection 88% and 99% respectively; only denitrification was slightly affected. Confirming the ruggedness and the superiority of membrane bioreactors over conventional bioreactors, no toxicity was observed at the considered level of TC in the pilot (20 mg TOC L−1), while at lab-scale sodium benzoate biodegradation was completely inhibited from 10 mg TOC L−1 TC. The origin of the activated sludge showed a significant impact on the performances, since the ultimate biodegradation was in the range −50% to −53% for TC concentrations in the range 10–20 mg TOC L−1 with conventional bioreactor sludge and increased to 18% for 40 mg TOC L−1 of TC with activated sludge derived from the MBR pilot. This confirmed the higher resistance of activated sludge arising from membrane bioreactor.  相似文献   

14.
Two bench-scale parallel moving bed biofilm reactors (MBBR) were operated to assess pH-associated anammox activity changes during long term treatment of anaerobically digested sludge centrate pre-treated in a suspended growth partial nitrification reactor. The pH was maintained at 6.5 in reactor R1, while it was allowed to vary naturally between 7.5 and 8.1 in reactor R2. At high nitrogen loads reactor R2 had a 61% lower volumetric specific nitrogen removal rate than reactor R1. The low pH and the associated low free ammonia (FA) concentrations were found to be critical to stable anammox activity in the MBBR. Nitrite enhanced the nitrogen removal rate in the conditions of low pH, all the way up to the investigated level of 50 mg NO2-N/L. At low FA levels nitrite concentrations up to 250 mg NO2-N/L did not cause inactivation of anammox consortia over a 2-days exposure time.  相似文献   

15.
膜-生物硝化反应器处理含氨废水效能的研究   总被引:1,自引:0,他引:1  
武小鹰  郑平  胡宝兰   《生物工程学报》2005,21(2):279-283
研究了膜 生物硝化反应器对含氨废水的处理效能以及分离膜的截留和渗透效能。膜_生物反应器启动迅速 ,在水力停留时间为 1d的情况下 ,反应器最高进水浓度达 80mmol(NH4+-N)·L-1 ,最高容积负荷达 1 12kg(NH4+ -N)·m-3·d-1 ,氨氮去除率保持在 95%以上。试验证明 ,分离膜对微生物有良好的截留作用 ,50天内反应器的污泥浓度从 5g·L-1 增长到 10g·L-1 ,分离膜表面附着的生物层则对废水氨氮和亚硝氮有进一步的转化作用。在液位差低于 80cm时 ,提高液位差可增大膜渗透通量 ;液位差超过 80cm后 ,增大液位差的膜渗透通量效应很小 ;其中 ,当液位差为 2 0cm左右时 ,膜通量达 2 . 5 1L·m-2 ·h-1 ,阻力最小 [(2 . 6 3× 10-5)m-1]。该膜_生物硝化反应器可依靠液位差压力驱动出水 ,无需外加动力。  相似文献   

16.
Combination of a partial nitritation process and an anaerobic ammonium oxidation process for the treatment of sludge reject water has some general cost-efficient advantages compared to nitrification-denitrification. The integrated process features two-stage autotrophic conversion of ammonium via nitrite to dinitrogen gas with lower demand for oxygen and no external carbon requirement. A nitrifying membrane-assisted bioreactor (MBR) for the treatment of sludge reject water was operated under continuous aeration at low dissolved oxygen (DO) concentrations with the purpose of generating nitrite accumulation. Microfiltration was applied to allow a high sludge retention time (SRT), resulting in a stable partial nitritation process. During start-up of the MBR, oxygen-limited conditions were induced by increasing the ammonium loading rate and decreasing the oxygen transfer. At a loading rate of 0.9 kg N m(-3) d(-1) and an oxygen concentration below 0.1 mg DO L(-1), conversion to nitrite was close to 50% of the incoming ammonium, thereby yielding an optimal effluent within the stoichiometric requirements for subsequent anaerobic ammonium oxidation. A mathematical model for ammonium oxidation to nitrite and nitrite oxidation to nitrate was developed to describe the oxygen-limited partial nitritation process within the MBR. The model was calibrated with in situ determinations of kinetic parameters for microbial growth, reflecting the intrinsic characteristics of the ammonium oxidizing growth system at limited oxygen availability and high sludge age. The oxygen transfer coefficient (K(L)a) and the ammonium-loading rate were shown to be the appropriate operational variables to describe the experimental data accurately. The validated model was used for further steady state simulation under different operational conditions of hydraulic retention time (HRT), K(L)a, temperature and SRT, with the intention to support optimized process design. Simulation results indicated that stable nitrite production from sludge reject water was feasible with this process even at a relatively low temperature of 20 degrees C with HRT down to 0.25 days.  相似文献   

17.
短程硝化启动运行中功能菌群变化研究   总被引:3,自引:0,他引:3  
【目的】短程硝化-厌氧氨氧化是可实现的最短生物脱氮工艺,短程硝化是实现该工艺的重要环节和必要条件。【方法】采用序批式反应器(SBR)来实现短程硝化过程的启动和稳定运行,并对该过程中的相关功能菌群变化进行检测分析。【结果】通过控制低DO浓度(<1 mg/L)和逐步提高氨氮进水负荷,可抑制氨氧化细菌(NOB)菌群增殖并促进亚硝酸氧化菌(AOB)菌群规模显著扩大,实现短程硝化过程的启动和稳定运行。在氨氮进水负荷为0.055 kg/(m3.d)时,平均氨氮去除容积负荷和污泥负荷可达到0.043kg/(m3.d)和0.16 kg/(kg.d),平均亚硝酸盐积累率可达到83.4%。在短程硝化启动和稳定运行过程中,NOB菌群密度从2.0×105CFU/mL降至1.5×104CFU/mL,相对丰度从5.51%降至2.14%;AOB菌群密度从4.5×104CFU/mL增加至1.5×107CFU/mL,相对丰度从0.18%增加至7.25%。【结论】AOB菌群规模的扩大是实现短程硝化和氨氮去除能力提高的主要原因,同时较高的进水氨氮浓度和负荷也会造成亚硝化活性的抑制。  相似文献   

18.
Sun FY  Wang XM  Li XY 《Bioresource technology》2011,102(7):4718-4725
A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs.  相似文献   

19.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

20.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号